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with the time spent in the rest of the calculation even for small
systems.

Unfortunately the VV10 kernel, Eq. (2), depends separately
on densities and density gradients in r and r′, and a direct
extension of the RPS procedure to perform a four-dimensional
interpolation would still be very computationally demanding.

To address this problem we analyze in some detail the
analytic behavior of the VV10 kernel. It is useful to introduce
the auxiliary function z(r) = ω0(r)

k(r) R2 + 1 such that g(r) =
k(r)z(r) and the original VV10 kernel can be rewritten as

"VV10(r,r′) = − 3e4
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where we can identify three ingredients: k
3
2 (r) and k′ 3

2 (r′),
that enter as simple multiplicative factors the densities in
Eq. (1), z(r) and z(r′), respectively, that depend on the ratio
of ω0 and k but not separately on the two, and the ratio

√
k/k′

that depends on the density on both grid points, r and r′. This
last term is the one that prevents the VV10 kernel from being
put in a form suitable to be treated by the RPS procedure.

We implemented the VV10 functional in the PWSCF code of
the QUANTUMESPRESSO distribution,25 performing explicitly
the calculation in real space, and we focused our attention
on the behavior of the ratio

√
k/k′. We ran our tests on

several molecular configurations taken from the S22 set of
noncovalently bonded complexes.8 In Fig. 1 we analyze

√
k/k′

obtained for the water dimer configuration; very similar results
were obtained in the analysis of the other test cases.

In the upper panel of Fig. 1 we show the values of
√

k/k′

as a function of the distance between the two points R =
|r − r′|. Only points whose charge density exceeds 10% of
the maximum value in the system are included in the plot.
From this analysis we can see that

√
k/k′ takes values in a

very narrow range centered around 1. The maximum deviation
from unity decreases with decreasing distance and collapses,
of course, to 1 for r = r′. For clarity only a small part of
the entire R dependence is shown but the range of values is
basically stable beyond R = 1 Å.
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FIG. 1. (Color online)
√

k/k′ as a function of the percentage
of interacting charge (with respect to the maximum charge in the
system). The red curve shows the maximum value of the ratio, while
the blue curve the minimum. This graph refers to the water dimer
configuration included in the S22 set, but similar results are obtained
for other cases we analyzed.

The range of possible values mildly depends on the charge
cutoff used in the calculation. In the lower panel of Fig. 1 we
report the maximum and minimum values of the

√
k/k′ ratio

as a function of the minimum charge density included in the
calculation, expressed in percentage of the maximum charge
density in the system. We see immediately that only for points
involving very small charges the ratio can deviate significantly
from 1. Combining the information from the two panels we can
conclude that

√
k/k′ can differ from unity only when involving

interacting charge densities far apart from each other and such
that at least one is very small. But even in this situation the
deviation of the ratio from unity contributes very little to the
integral since the kernel is multiplied by the product of the two
charge densities. Moreover for large R all the z factors in the
denominator in Eq. (4) tend to be large.

With this in mind, it is natural to introduce an approximation
where the ratio

√
k/k′ is dropped in Eq. (4), and we propose a

revised VV10 kernel (rVV10) that reads

"rVV10 = − 3e4
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where we have defined q and q ′ as q(r) =
ω0(n(r),|∇n(r)|)/k(n(r)), and similarly for r′, and we
have removed from the kernel definition the factors 1/k

3
2 and

1/k′ 3
2 that will be directly multiplied to the corresponding

densities.
This revised form allows us to apply the RPS interpolation

scheme in reciprocal space in the evaluation of the integral that
reads
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where "̃rVV10(qi,qj ,|G|) are the Fourier transforms of the
rVV10 kernel evaluated on a bidimensional grid of q
values, and θ̃i(G) are the Fourier transforms of θi(r) =
n(r)Pi(q(r))/k

3
2 (r), where Pi(q) are the same interpolating

polynomials introduced in Ref. 24.
We implemented the revised functional in the QUANTUM

ESPRESSO distribution25 including the self-consistent evalua-
tion of the corresponding correlation potential14 as well as the
evaluation of forces and the stress tensor.26

We have found that a logarithmic mesh of 20 q points
is enough to correctly interpolate the kernel "rVV10, and we
used the saturation scheme proposed in RPS.24 With this
setup the evaluation of the exchange and correlation energy
and potential becomes 400 times more expensive than for a
standard semilocal functional. Accounting for up to 30 to 50%
in a few electron system, it is totally negligible for larger
system with many electrons per cell and/or many k points.

Following the original VV10 functional definition, the full
XC energy is defined as ErVV10

xc = ErPW86
x + ELDA

c + ErVV10
c−nl ,

where ErPW86
x stands for the refitted Perdew-Wang exchange

functional27 and ELDA
c is the local density approximation

for the correlation according to the Perdew and Wang28

parametrization.
As a first benchmark we compare29,30 our revised functional

with the original VV10 on the S22 molecular set obtaining
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