<html>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>
</head>
<body>
<style>
font{
line-height: 1.7;
}
</style>
<div style = 'font-family:"微软雅黑"; font-size: 14px; color:#000000; line-height:1.7;'>
<div>
<div>Dear developers,</div><div> I found that the result of phonon GRID_example 3 is not consistent with reference.</div><div> According to README of of GRID_example, example 3 is that all the bands are calculated first and then the band files are</div><div>copied in the outdir directories or each ph.x run. So each run will not done band calculation repeatedly. This is clear from output files in reference_3.</div><div> But after I run ./run_example_3, I found most of the output file in results_3 still contains bands calculation part, which is not consistent with reference_3</div><div> For example, at the end of this email, I attached the output.2.1 in results_3 what I got.</div><div> I think there is something wrong with example3, because it is not consistent with README.</div><div> How to recover correct behaviour of example3?</div><div><br></div><div>best regards</div><div><br></div><div>--------------</div><div>below is output.2.1 in results_3</div><div><br></div><div><div><br></div><div> Program PHONON v.6.1 starts on 22Sep2017 at 18:33:35 </div><div><br></div><div> This program is part of the open-source Quantum ESPRESSO suite</div><div> for quantum simulation of materials; please cite</div><div> "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);</div><div> URL http://www.quantum-espresso.org", </div><div> in publications or presentations arising from this work. More details at</div><div> http://www.quantum-espresso.org/quote</div><div><br></div><div> Parallel version (MPI), running on 2 processors</div><div> R & G space division: proc/nbgrp/npool/nimage = 2</div><div><br></div><div> Reading data from directory:</div><div> /mnt/e/DFT_code/QE/qe_tmpdir/2.1/alas.save/</div><div><br></div><div> Info: using nr1, nr2, nr3 values from input</div><div><br></div><div> Info: using nr1, nr2, nr3 values from input</div><div><br></div><div> IMPORTANT: XC functional enforced from input :</div><div> Exchange-correlation = PZ ( 1 1 0 0 0 0)</div><div> Any further DFT definition will be discarded</div><div> Please, verify this is what you really want</div><div><br></div><div><br></div><div> Parallelization info</div><div> --------------------</div><div> sticks: dense smooth PW G-vecs: dense smooth PW</div><div> Min 120 120 42 1221 1221 229</div><div> Max 121 121 43 1224 1224 230</div><div> Sum 241 241 85 2445 2445 459</div><div><br></div><div> 1 / 8 q-points for this run, from 2 to 2:</div><div> N xq(1) xq(2) xq(3) </div><div> 1 0.000000000 0.000000000 0.000000000</div><div> 2 -0.250000000 0.250000000 -0.250000000</div><div> 3 0.500000000 -0.500000000 0.500000000</div><div> 4 0.000000000 0.500000000 0.000000000</div><div> 5 0.750000000 -0.250000000 0.750000000</div><div> 6 0.500000000 0.000000000 0.500000000</div><div> 7 0.000000000 -1.000000000 0.000000000</div><div> 8 -0.500000000 -1.000000000 0.000000000</div><div><br></div><div><br></div><div> Calculation of q = -0.2500000 0.2500000 -0.2500000</div><div><br></div><div> Info: using nr1, nr2, nr3 values from input</div><div><br></div><div> Info: using nr1, nr2, nr3 values from input</div><div><br></div><div> Parallelization info</div><div> --------------------</div><div> sticks: dense smooth PW G-vecs: dense smooth PW</div><div> Min 120 120 42 1221 1221 264</div><div> Max 121 121 43 1224 1224 267</div><div> Sum 241 241 85 2445 2445 531</div><div><br></div><div><br></div><div> Title: </div><div> phonons of AlAs </div><div><br></div><div><br></div><div> bravais-lattice index = 2</div><div> lattice parameter (alat) = 10.5000 a.u.</div><div> unit-cell volume = 289.4062 (a.u.)^3</div><div> number of atoms/cell = 2</div><div> number of atomic types = 2</div><div> number of electrons = 8.00</div><div> number of Kohn-Sham states= 4</div><div> kinetic-energy cutoff = 16.0000 Ry</div><div> charge density cutoff = 64.0000 Ry</div><div> Exchange-correlation = PZ ( 1 1 0 0 0 0)</div><div><br></div><div> celldm(1)= 10.500000 celldm(2)= 0.000000 celldm(3)= 0.000000</div><div> celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000</div><div><br></div><div> crystal axes: (cart. coord. in units of alat)</div><div> a(1) = ( -0.500000 0.000000 0.500000 ) </div><div> a(2) = ( 0.000000 0.500000 0.500000 ) </div><div> a(3) = ( -0.500000 0.500000 0.000000 ) </div><div><br></div><div> reciprocal axes: (cart. coord. in units 2 pi/alat)</div><div> b(1) = ( -1.000000 -1.000000 1.000000 ) </div><div> b(2) = ( 1.000000 1.000000 1.000000 ) </div><div> b(3) = ( -1.000000 1.000000 -1.000000 ) </div><div><br></div><div><br></div><div> PseudoPot. # 1 for Al read from file:</div><div> ./Al.pz-vbc.UPF</div><div> MD5 check sum: 614279c88ff8d45c90147292d03ed420</div><div> Pseudo is Norm-conserving, Zval = 3.0</div><div> Generated by new atomic code, or converted to UPF format</div><div> Using radial grid of 171 points, 2 beta functions with: </div><div> l(1) = 0</div><div> l(2) = 1</div><div><br></div><div> PseudoPot. # 2 for As read from file:</div><div> ./As.pz-bhs.UPF</div><div> MD5 check sum: 451cd3365afcfc94d28b1934951c34a8</div><div> Pseudo is Norm-conserving, Zval = 5.0</div><div> Generated by new atomic code, or converted to UPF format</div><div> Using radial grid of 525 points, 2 beta functions with: </div><div> l(1) = 0</div><div> l(2) = 1</div><div><br></div><div> atomic species valence mass pseudopotential</div><div> Al 3.00 26.98000 Al( 1.00)</div><div> As 5.00 74.92000 As( 1.00)</div><div><br></div><div> 24 Sym. Ops. (no inversion) found</div><div><br></div><div><br></div><div><br></div><div> Cartesian axes</div><div><br></div><div> site n. atom positions (alat units)</div><div> 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )</div><div> 2 As tau( 2) = ( 0.2500000 0.2500000 0.2500000 )</div><div><br></div><div> number of k points= 20</div><div> cart. coord. in units 2pi/alat</div><div> k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.1875000</div><div> k( 2) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0000000</div><div> k( 3) = ( 0.2500000 0.2500000 0.7500000), wk = 0.3750000</div><div> k( 4) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0000000</div><div> k( 5) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0625000</div><div> k( 6) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.0000000</div><div> k( 7) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1875000</div><div> k( 8) = ( -0.5000000 0.0000000 -0.5000000), wk = 0.0000000</div><div> k( 9) = ( 0.2500000 -0.2500000 0.2500000), wk = 0.0625000</div><div> k( 10) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0000000</div><div> k( 11) = ( -0.2500000 0.2500000 -0.7500000), wk = 0.1875000</div><div> k( 12) = ( -0.5000000 0.5000000 -1.0000000), wk = 0.0000000</div><div> k( 13) = ( -0.7500000 -0.2500000 0.2500000), wk = 0.1875000</div><div> k( 14) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0000000</div><div> k( 15) = ( -0.2500000 -0.2500000 -0.7500000), wk = 0.3750000</div><div> k( 16) = ( -0.5000000 0.0000000 -1.0000000), wk = 0.0000000</div><div> k( 17) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.1875000</div><div> k( 18) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0000000</div><div> k( 19) = ( -0.2500000 0.2500000 0.7500000), wk = 0.1875000</div><div> k( 20) = ( -0.5000000 0.5000000 0.5000000), wk = 0.0000000</div><div><br></div><div> Dense grid: 2445 G-vectors FFT dimensions: ( 20, 20, 20)</div><div><br></div><div> Estimated max dynamical RAM per process > 0.51MB</div><div><br></div><div> Estimated total allocated dynamical RAM > 1.02MB</div><div><br></div><div> The potential is recalculated from file :</div><div> /mnt/e/DFT_code/QE/qe_tmpdir/2.1/_ph0/alas.q_2/alas.save/charge-density.dat</div><div><br></div><div> Starting wfc are 8 atomic wfcs</div><div><br></div><div> Band Structure Calculation</div><div> Davidson diagonalization with overlap</div><div><br></div><div> ethr = 1.25E-10, avg # of iterations = 11.0</div><div><br></div><div> total cpu time spent up to now is 0.9 secs</div><div><br></div><div> End of band structure calculation</div><div><br></div><div> k = 0.2500 0.2500 0.2500 ( 311 PWs) bands (ev):</div><div><br></div><div> -6.3575 1.7035 4.6970 4.6970</div><div><br></div><div> k = 0.0000 0.5000 0.0000 ( 311 PWs) bands (ev):</div><div><br></div><div> -6.1430 1.9396 3.7847 3.7847</div><div><br></div><div> k = 0.2500 0.2500 0.7500 ( 311 PWs) bands (ev):</div><div><br></div><div> -5.1819 -0.0415 2.3125 3.5086</div><div><br></div><div> k = 0.0000 0.5000 0.5000 ( 315 PWs) bands (ev):</div><div><br></div><div> -5.5287 0.5005 2.1485 4.2663</div><div><br></div><div> k =-0.2500 0.2500-0.2500 ( 311 PWs) bands (ev):</div><div><br></div><div> -6.3575 1.7035 4.6970 4.6970</div><div><br></div><div> k =-0.5000 0.5000-0.5000 ( 302 PWs) bands (ev):</div><div><br></div><div> -5.4218 -0.6403 4.3483 4.3483</div><div><br></div><div> k =-0.2500-0.2500-0.2500 ( 311 PWs) bands (ev):</div><div><br></div><div> -6.3575 1.7035 4.6970 4.6970</div><div><br></div><div> k =-0.5000 0.0000-0.5000 ( 315 PWs) bands (ev):</div><div><br></div><div> -5.5287 0.5005 2.1485 4.2663</div><div><br></div><div> k = 0.2500-0.2500 0.2500 ( 311 PWs) bands (ev):</div><div><br></div><div> -6.3575 1.7035 4.6970 4.6970</div><div><br></div><div> k = 0.0000 0.0000 0.0000 ( 331 PWs) bands (ev):</div><div><br></div><div> -6.9797 5.1761 5.1761 5.1761</div><div><br></div><div> k =-0.2500 0.2500-0.7500 ( 311 PWs) bands (ev):</div><div><br></div><div> -5.1819 -0.0415 2.3125 3.5086</div><div><br></div><div> k =-0.5000 0.5000-1.0000 ( 315 PWs) bands (ev):</div><div><br></div><div> -5.5287 0.5005 2.1485 4.2663</div><div><br></div><div> k =-0.7500-0.2500 0.2500 ( 311 PWs) bands (ev):</div><div><br></div><div> -5.1819 -0.0415 2.3125 3.5086</div><div><br></div><div> k =-1.0000 0.0000 0.0000 ( 302 PWs) bands (ev):</div><div><br></div><div> -4.8217 -0.4470 2.9274 2.9274</div><div><br></div><div> k =-0.2500-0.2500-0.7500 ( 311 PWs) bands (ev):</div><div><br></div><div> -5.1819 -0.0415 2.3125 3.5086</div><div><br></div><div> k =-0.5000 0.0000-1.0000 ( 308 PWs) bands (ev):</div><div><br></div><div> -4.7852 -0.0517 1.7949 2.1910</div><div><br></div><div> k = 0.2500-0.2500 0.7500 ( 311 PWs) bands (ev):</div><div><br></div><div> -5.1819 -0.0415 2.3125 3.5086</div><div><br></div><div> k = 0.0000 0.0000 0.5000 ( 311 PWs) bands (ev):</div><div><br></div><div> -6.1430 1.9396 3.7847 3.7847</div><div><br></div><div> k =-0.2500 0.2500 0.7500 ( 311 PWs) bands (ev):</div><div><br></div><div> -5.1819 -0.0415 2.3125 3.5086</div><div><br></div><div> k =-0.5000 0.5000 0.5000 ( 302 PWs) bands (ev):</div><div><br></div><div> -5.4218 -0.6403 4.3483 4.3483</div><div><br></div><div> highest occupied level (ev): 4.6970</div><div><br></div><div> Writing output data file alas.save</div><div><br></div><div> phonons of AlAs </div><div><br></div><div> bravais-lattice index = 2</div><div> lattice parameter (alat) = 10.5000 a.u.</div><div> unit-cell volume = 289.4062 (a.u.)^3</div><div> number of atoms/cell = 2</div><div> number of atomic types = 2</div><div> kinetic-energy cut-off = 16.0000 Ry</div><div> charge density cut-off = 64.0000 Ry</div><div> convergence threshold = 1.0E-12</div><div> beta = 0.7000</div><div> number of iterations used = 4</div><div> Exchange-correlation = PZ ( 1 1 0 0 0 0)</div><div><br></div><div><br></div><div> celldm(1)= 10.50000 celldm(2)= 0.00000 celldm(3)= 0.00000</div><div> celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000</div><div><br></div><div> crystal axes: (cart. coord. in units of alat)</div><div> a(1) = ( -0.5000 0.0000 0.5000 ) </div><div> a(2) = ( 0.0000 0.5000 0.5000 ) </div><div> a(3) = ( -0.5000 0.5000 0.0000 ) </div><div><br></div><div> reciprocal axes: (cart. coord. in units 2 pi/alat)</div><div> b(1) = ( -1.0000 -1.0000 1.0000 ) </div><div> b(2) = ( 1.0000 1.0000 1.0000 ) </div><div> b(3) = ( -1.0000 1.0000 -1.0000 ) </div><div><br></div><div><br></div><div> Atoms inside the unit cell: </div><div><br></div><div> Cartesian axes</div><div><br></div><div> site n. atom mass positions (alat units)</div><div> 1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )</div><div> 2 As 74.9200 tau( 2) = ( 0.25000 0.25000 0.25000 )</div><div><br></div><div> Computing dynamical matrix for </div><div> q = ( -0.2500000 0.2500000 -0.2500000 )</div><div><br></div><div> 6 Sym.Ops. (no q -> -q+G )</div><div><br></div><div><br></div><div> G cutoff = 178.7306 ( 1224 G-vectors) FFT grid: ( 20, 20, 20)</div><div> number of k points= 20</div><div><br></div><div> PseudoPot. # 1 for Al read from file:</div><div> ./Al.pz-vbc.UPF</div><div> MD5 check sum: 614279c88ff8d45c90147292d03ed420</div><div> Pseudo is Norm-conserving, Zval = 3.0</div><div> Generated by new atomic code, or converted to UPF format</div><div> Using radial grid of 171 points, 2 beta functions with: </div><div> l(1) = 0</div><div> l(2) = 1</div><div><br></div><div> PseudoPot. # 2 for As read from file:</div><div> ./As.pz-bhs.UPF</div><div> MD5 check sum: 451cd3365afcfc94d28b1934951c34a8</div><div> Pseudo is Norm-conserving, Zval = 5.0</div><div> Generated by new atomic code, or converted to UPF format</div><div> Using radial grid of 525 points, 2 beta functions with: </div><div> l(1) = 0</div><div> l(2) = 1</div><div><br></div><div> Mode symmetry, C_3v (3m) point group:</div><div><br></div><div><br></div><div> Atomic displacements:</div><div> There are 4 irreducible representations</div><div><br></div><div> Representation 1 1 modes -A_1 L_1 To be done</div><div><br></div><div> Representation 2 1 modes -A_1 L_1 Not done in this run</div><div><br></div><div> Representation 3 2 modes -E L_3 Not done in this run</div><div><br></div><div> Representation 4 2 modes -E L_3 Not done in this run</div><div><br></div><div> Compute atoms: 1,</div><div><br></div><div><br></div><div> PHONON : 1.05s CPU 1.80s WALL</div><div><br></div><div><br></div><div><br></div><div> Representation # 1 mode # 1</div><div><br></div><div> Self-consistent Calculation</div><div><br></div><div> iter # 1 total cpu time : 2.0 secs av.it.: 5.6</div><div> thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 6.514E-04</div><div><br></div><div> iter # 2 total cpu time : 2.3 secs av.it.: 7.6</div><div> thresh= 2.552E-03 alpha_mix = 0.700 |ddv_scf|^2 = 5.928E-03</div><div><br></div><div> iter # 3 total cpu time : 2.5 secs av.it.: 6.2</div><div> thresh= 7.699E-03 alpha_mix = 0.700 |ddv_scf|^2 = 2.188E-07</div><div><br></div><div> iter # 4 total cpu time : 2.6 secs av.it.: 8.2</div><div> thresh= 4.678E-05 alpha_mix = 0.700 |ddv_scf|^2 = 7.859E-09</div><div><br></div><div> iter # 5 total cpu time : 2.8 secs av.it.: 8.1</div><div> thresh= 8.865E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.526E-09</div><div><br></div><div> iter # 6 total cpu time : 2.9 secs av.it.: 7.0</div><div> thresh= 3.906E-06 alpha_mix = 0.700 |ddv_scf|^2 = 4.348E-10</div><div><br></div><div> iter # 7 total cpu time : 3.1 secs av.it.: 7.4</div><div> thresh= 2.085E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.776E-11</div><div><br></div><div> iter # 8 total cpu time : 3.2 secs av.it.: 7.5</div><div> thresh= 4.214E-07 alpha_mix = 0.700 |ddv_scf|^2 = 4.685E-13</div><div><br></div><div> End of self-consistent calculation</div><div><br></div><div> Convergence has been achieved </div><div><br></div><div> Not diagonalizing because representation 2 is not done</div><div><br></div><div> init_run : 0.06s CPU 0.11s WALL ( 1 calls)</div><div> electrons : 0.52s CPU 0.84s WALL ( 1 calls)</div><div><br></div><div> Called by init_run:</div><div> wfcinit : 0.00s CPU 0.01s WALL ( 1 calls)</div><div> potinit : 0.00s CPU 0.02s WALL ( 1 calls)</div><div><br></div><div> Called by electrons:</div><div> c_bands : 0.52s CPU 0.84s WALL ( 1 calls)</div><div> v_of_rho : 0.00s CPU 0.01s WALL ( 2 calls)</div><div><br></div><div> Called by c_bands:</div><div> init_us_2 : 0.00s CPU 0.01s WALL ( 120 calls)</div><div> cegterg : 0.42s CPU 0.67s WALL ( 20 calls)</div><div><br></div><div> Called by sum_band:</div><div><br></div><div> Called by *egterg:</div><div> h_psi : 0.86s CPU 1.36s WALL ( 951 calls)</div><div> g_psi : 0.00s CPU 0.00s WALL ( 220 calls)</div><div> cdiaghg : 0.06s CPU 0.10s WALL ( 240 calls)</div><div><br></div><div> Called by h_psi:</div><div> h_psi:pot : 0.84s CPU 1.35s WALL ( 951 calls)</div><div> h_psi:calbec : 0.03s CPU 0.11s WALL ( 951 calls)</div><div> vloc_psi : 0.77s CPU 1.19s WALL ( 951 calls)</div><div> add_vuspsi : 0.05s CPU 0.03s WALL ( 951 calls)</div><div><br></div><div> General routines</div><div> calbec : 0.08s CPU 0.18s WALL ( 1722 calls)</div><div> fft : 0.00s CPU 0.04s WALL ( 32 calls)</div><div> ffts : 0.00s CPU 0.00s WALL ( 16 calls)</div><div> fftw : 0.73s CPU 1.23s WALL ( 8146 calls)</div><div> davcio : 0.00s CPU 0.03s WALL ( 504 calls)</div><div><br></div><div> Parallel routines</div><div> fft_scatter : 0.27s CPU 0.63s WALL ( 8194 calls)</div><div><br></div><div> PHONON : 1.81s CPU 3.27s WALL</div><div><br></div><div> INITIALIZATION: </div><div> phq_setup : 0.00s CPU 0.03s WALL ( 1 calls)</div><div> phq_init : 0.08s CPU 0.07s WALL ( 1 calls)</div><div><br></div><div> phq_init : 0.08s CPU 0.07s WALL ( 1 calls)</div><div> init_vloc : 0.03s CPU 0.01s WALL ( 2 calls)</div><div> init_us_1 : 0.03s CPU 0.06s WALL ( 2 calls)</div><div><br></div><div> DYNAMICAL MATRIX:</div><div> phqscf : 0.77s CPU 1.45s WALL ( 1 calls)</div><div> dynmatrix : 0.00s CPU 0.01s WALL ( 1 calls)</div><div><br></div><div> phqscf : 0.77s CPU 1.45s WALL ( 1 calls)</div><div> solve_linter : 0.75s CPU 1.43s WALL ( 1 calls)</div><div> drhodv : 0.00s CPU 0.01s WALL ( 1 calls)</div><div><br></div><div><br></div><div><br></div><div> phqscf : 0.77s CPU 1.45s WALL ( 1 calls)</div><div> solve_linter : 0.75s CPU 1.43s WALL ( 1 calls)</div><div><br></div><div> solve_linter : 0.75s CPU 1.43s WALL ( 1 calls)</div><div> dvqpsi_us : 0.00s CPU 0.03s WALL ( 10 calls)</div><div> ortho : 0.00s CPU 0.01s WALL ( 80 calls)</div><div> cgsolve : 0.59s CPU 1.04s WALL ( 80 calls)</div><div> incdrhoscf : 0.05s CPU 0.09s WALL ( 80 calls)</div><div> vpsifft : 0.03s CPU 0.07s WALL ( 70 calls)</div><div> dv_of_drho : 0.00s CPU 0.01s WALL ( 8 calls)</div><div> mix_pot : 0.02s CPU 0.02s WALL ( 8 calls)</div><div> psymdvscf : 0.02s CPU 0.05s WALL ( 8 calls)</div><div><br></div><div> dvqpsi_us : 0.00s CPU 0.03s WALL ( 10 calls)</div><div> dvqpsi_us_on : 0.00s CPU 0.00s WALL ( 10 calls)</div><div><br></div><div> cgsolve : 0.59s CPU 1.04s WALL ( 80 calls)</div><div> ch_psi : 0.53s CPU 0.94s WALL ( 691 calls)</div><div><br></div><div> ch_psi : 0.53s CPU 0.94s WALL ( 691 calls)</div><div> h_psi : 0.86s CPU 1.36s WALL ( 951 calls)</div><div> last : 0.06s CPU 0.15s WALL ( 691 calls)</div><div><br></div><div> h_psi : 0.86s CPU 1.36s WALL ( 951 calls)</div><div> add_vuspsi : 0.05s CPU 0.03s WALL ( 951 calls)</div><div><br></div><div> incdrhoscf : 0.05s CPU 0.09s WALL ( 80 calls)</div><div><br></div><div><br></div><div> General routines</div><div> calbec : 0.08s CPU 0.18s WALL ( 1722 calls)</div><div> fft : 0.00s CPU 0.04s WALL ( 32 calls)</div><div> ffts : 0.00s CPU 0.00s WALL ( 16 calls)</div><div> fftw : 0.73s CPU 1.23s WALL ( 8146 calls)</div><div> davcio : 0.00s CPU 0.03s WALL ( 504 calls)</div><div> write_rec : 0.05s CPU 0.07s WALL ( 9 calls)</div><div><br></div><div><br></div><div> PHONON : 1.81s CPU 3.27s WALL</div><div><br></div><div><br></div><div> This run was terminated on: 18:33:38 22Sep2017 </div><div><br></div><div>=------------------------------------------------------------------------------=</div><div> JOB DONE.</div><div>=------------------------------------------------------------------------------=</div></div><div><br></div><div id="ntes-pcmail-signature" style="font-family:'微软雅黑'"><font style="padding: 0; margin:0;"> </font>
</div><br>
</div><style type="text/css">
a#ntes-pcmail-signature-default:hover {
text-decoration: underline;
color: #199cff;
cursor: pointer;
}
a#ntes-pcmail-signature-default:active {
text-decoration: underline;
color: #246fce;
cursor: pointer;
}
</style><!--😀-->
</div>
</body>
</html>