<div dir="auto">Dear Jacopo,<div dir="auto">The g vectors that are used respect the cutoff condition |k+G|^2 < ecutwc/hbar, this defines a sphere (per k point). The box, used for the FFT, is the smallest that contains all spheres.</div><div dir="auto"><br></div><div dir="auto">Kind regards<br><br><div data-smartmail="gmail_signature" dir="auto">-- <br>Lorenzo Paulatto<br>Written on a virtual keyboard with real fingers</div></div></div><div class="gmail_extra"><br><div class="gmail_quote">On 26 May 2017 2:48 a.m., "Jacopo Simoni" <<a href="mailto:simonij@tcd.ie">simonij@tcd.ie</a>> wrote:<br type="attribution"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div>Dear PWSCF users,<br><br></div>I am doing a simple scf calculation for a system of 100 Hydrogen atoms in a simple cubic cell.<br><br></div>I am generating the wave functions with wf_collect=.true. for a single K vector (0,0,0).<br><br></div><div>From the scf output I realized that the total number of G vectors printed on the file is 847. I am using ecutwfc=20.0 and the shape of the Kohn-Sham matrix is<br><br></div><div>Kohn-Sham wave functions dimensions=(847, 52)<br><br></div><div>where 52 corresponds to the number of bands that I am using in the calculation.<br><br></div><div>However, I am wondering why in the gkvectors.xml file I have a list of G vectors ranging between -5 and 5 times 2*pi / a (a is the lattice parameter) along each primitive lattice direction.<br><br></div><div>The total number of points in such a regular grid should be 11*11*11 = 1331 that is clearly different from 847. What is the meaning of the missing 484 G vectors in the grid ? I am a bit confused could you please explain to me these results ?<br><br></div><div>Many thanks in advance,<br><br></div><div>Jacopo Simoni,<br></div><div>Los Alamos National Laboratory<br></div></div>
<br>______________________________<wbr>_________________<br>
Pw_forum mailing list<br>
<a href="mailto:Pw_forum@pwscf.org">Pw_forum@pwscf.org</a><br>
<a href="http://pwscf.org/mailman/listinfo/pw_forum" rel="noreferrer" target="_blank">http://pwscf.org/mailman/<wbr>listinfo/pw_forum</a><br></blockquote></div></div>