<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size: 12pt; color: rgb(0, 0, 0); font-family: Calibri, Arial, Helvetica, sans-serif, EmojiFont, "Apple Color Emoji", "Segoe UI Emoji", NotoColorEmoji, "Segoe UI Symbol", "Android Emoji", EmojiSymbols, EmojiFont, "Apple Color Emoji", "Segoe UI Emoji", NotoColorEmoji, "Segoe UI Symbol", "Android Emoji", EmojiSymbols, EmojiFont, "Apple Color Emoji", "Segoe UI Emoji", NotoColorEmoji, "Segoe UI Symbol", "Android Emoji", EmojiSymbols;" dir="ltr">
<p>Hi, </p>
<p><br>
</p>
<p>Thank you for your very helpful and detailed response Lorenzo. We have now been able to produce nice Raman spectra for our system.</p>
<p><br>
</p>
<p>On a related topic, we were interested in how the choice of supercell size might influence the vibrational modes we calculate. For instance, looking at a the smallest repeatable unit of our system naturally yields fewer vibrational modes than simulating
 a cell of 2 or 3 times the size. We were wondering whether allowing the extra freedom associated with a larger cell might actually map worse onto experimental results? </p>
<p><br>
</p>
<p>Thanks again,</p>
<p><br>
Charlie Ruffman</p>
<p>University of Otago</p>
<p>New Zealand</p>
</div>
</body>
</html>