<div dir="ltr">Hi Chris,<div><br></div><div>If you want to compute the ground state dipole moment of a molecule then there is no need to apply any electric field. Set</div><div><br></div><div><font face="monospace, monospace">assume_isolated = 'mp'</font></div><div><br></div><div>in the system namelist, which will then give you the dipole moment of the molecule at the end of the scf, supposing the molecule is isolated. Note that the dipole moment computed this way converges quite slowly with respect to the size of the box. I know that your attached input is not fully converged but in this case, the size of the box is crucial and your box size is certainly not enough to get any realistic number. I'm actually quite sure that your finite field calculations are not giving reasonable numbers because there is basically no vacuum region: in the finite field approach the region where the sawtooth potential changes sign should be in the "vacuum" with little or no density:</div><div><br></div><div><a href="http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html#idm140629872333184">http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html#idm140629872333184<br></a></div><div><br></div><div>Also, if you are interested in computing the polarizability using DFPT you won't need to do 3N perturbations. Just ask QE to compute the high-frequency dielectric constant (<font face="monospace, monospace">epsil=.true. </font>and <font face="monospace, monospace">trans=.false.</font> in the ph.x input). There will only be three perturbations corresponding to the three cartesian components of the external field. If you use the gamma k-point to sample the BZ zone then QE will extract the molecular polarizability from the dielectric constant using the Clausius-Mossotti formula and will report it in the output. Again, you would have to converge the result with the cell size.</div><div><br></div><div>HTH,</div><div>Marton Voros</div><div><br></div><div>--</div><div>Materials Science Division</div><div>Argonne National Laboratory</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Sat, Apr 15, 2017 at 10:38 PM, Christoph Wolf(신소재공학과) <span dir="ltr"><<a href="mailto:chwolf@postech.ac.kr" target="_blank">chwolf@postech.ac.kr</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="m_-5662239998188175023WordSection1">
<p class="MsoNormal">Dear all!<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">I am currently trying to reproduce calculated dipoles for organic molecules previously reported. As an example I will use Alq3 because it is well studied in literature.<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">I have read a previous discussion on the topic of dipole calculation using external fields:
<a href="http://pw_forum.pwscf.narkive.com/1odbbguH/dipole-moment-calculation" target="_blank">http://pw_forum.pwscf.narkive.<wbr>com/1odbbguH/dipole-moment-<wbr>calculation</a><u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">In brief, using lelfield and dipfield Giovanni and Aihua were able to calculate the dipole of H2O in good agreement with literature (1.88 D vs 1.89 D).
<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Alq3 has been previously reported e.g. <a href="https://journals.aps.org/prb/pdf/10.1103/PhysRevB.61.15804" target="_blank">
https://journals.aps.org/prb/<wbr>pdf/10.1103/PhysRevB.61.15804</a> there, the authors note:<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">“We find that the calculated molecular polarizability accurately describes the solid-state polarization corrections and can be used to determine the measured static dielectric constant. The calculated molecular dipole moment can be used
to interpret the electric-field dependence of the electron mobility.” Using B3LYP in Gaussian90 they arrive at a dipole moment of d=5.3 Debye; unfortunately I have never worked with Gaussian and don’t know how this calculation was most likely performed.<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">As a “quick and dirty” approach I used the method outlined for H2O in the first link and calculate the dipoles for efield=1,2,3 (input structure is in the attached image); the results are:<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Computed dipole along edir(1) : <u></u><u></u></p>
<p class="MsoNormal"> Elec. dipole -0.5198 Ry au, -1.3213 Debye<u></u><u></u></p>
<p class="MsoNormal"> <span lang="DE-AT">Ion. dipole -0.5375 Ry au, -1.3662 Debye<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="DE-AT"> Dipole -11.2534 Ry au, -28.6033 Debye<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="DE-AT"> </span>Dipole field -0.0177 Ry au,<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Computed dipole along edir(2) : <u></u><u></u></p>
<p class="MsoNormal"> <span lang="DE-AT">Elec. dipole -0.1980 Ry au, -0.5033 Debye<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="DE-AT"> Ion. dipole -0.2097 Ry au, -0.5330 Debye<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="DE-AT"> Dipole -7.4406 Ry au, -18.9122 Debye<u></u><u></u></span></p>
<p class="MsoNormal"> Dipole field -0.0117 Ry au,<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal"> Computed dipole along edir(3) : <u></u><u></u></p>
<p class="MsoNormal"> <span lang="DE-AT">Elec. dipole 0.0367 Ry au, 0.0932 Debye<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="DE-AT"> Ion. dipole 0.0346 Ry au, 0.0879 Debye<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="DE-AT"> Dipole -1.3285 Ry au, -3.3768 Debye<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="DE-AT"> </span>Dipole field -0.0021 Ry au,<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Now this gives rather large dipoles in x,y and “compatible” dipole magnitude in z direction.<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Can someone comment on how to improve (in terms of quality of the reproduction of d=5.3 D) these results, ideally I want to avoid ph.x polarizability calculations because the molecules are rather large (52 atoms x 3 modes = long time…)<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Input file is attached, please not I have not converged the calculation with respect to position of the molecule in the box and cell size.<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Yours,<u></u><u></u></p>
<p class="MsoNormal">Chris<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Christoph Wolf <u></u><u></u></p>
<p class="MsoNormal">Postech University, Department of Materials Science and Engineering<u></u><u></u></p>
<p class="MsoNormal">Pohang, Republic of Korea <u></u><u></u></p>
</div>
</div>
<br>______________________________<wbr>_________________<br>
Pw_forum mailing list<br>
<a href="mailto:Pw_forum@pwscf.org">Pw_forum@pwscf.org</a><br>
<a href="http://pwscf.org/mailman/listinfo/pw_forum" rel="noreferrer" target="_blank">http://pwscf.org/mailman/<wbr>listinfo/pw_forum</a><br></blockquote></div><br></div>