<div dir="ltr"><div class="gmail_extra"><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif">​Dear Giuseppe,</div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif"><br></div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif">Sorry for the delay. That might be some bugs in the plot_drho calculation, but I do not have your input file for the ground state calculation, so I cannot reproduce your error. I tried to do this calculation with another system, everything works fine. Can you follow the example and double check your input? If it still doesn't work please send me all your input files. </div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif"><br></div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif">Regarding the response density, I am afraid you do have a misunderstanding. Since we are using the linear response approach, the response density is </div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif">|H+L|^2 -|H|^2 ~= 2H*L</div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif">which means you should take the product of Homo and Lumo. If you plot both the Homo and Lumo, what you should expect for the response density if a product of these two orbitals, instead of charge depletion and charge accumulation. If you would like to know details of how the response density is defined in TDDFT@QE, I suggest you to read this paper:</div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif"><span style="color:rgb(51,51,51);font-family:verdana;font-size:11px;line-height:15.7143px">J. Chem. Phys. <span class="" style="font-weight:bold">128</span></span><span style="color:rgb(51,51,51);font-family:verdana;font-size:11px;line-height:15.7143px">, 154105</span><span style="color:rgb(51,51,51);font-family:verdana;font-size:11px;line-height:15.7143px"> (2008)</span><br></div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif"><span style="color:rgb(51,51,51);font-family:verdana;font-size:11px;line-height:15.7143px"><br></span></div><div class="gmail_default">I wish my answer helps, please do not hesitate to let me know if you want to discuss more. </div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif"><br></div><div class="gmail_default" style="font-family:'trebuchet ms',sans-serif">Best,</div><br><div class="gmail_quote">On 29 January 2016 at 10:52, Giuseppe Mattioli <span dir="ltr"><<a href="mailto:giuseppe.mattioli@ism.cnr.it" target="_blank">giuseppe.mattioli@ism.cnr.it</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div style="overflow:hidden">Neither I in the case of a symmetric water molecule. I was only trying to say that the plotted quantity could not be the total density of the S1*<br>
state because it contains a negative and a positive part. In a "naif" view I would say that if a given electronic transition is almost totally<br>
projected on the HOMO-->LUMO vector, then the lplot_drho plot should show charge depletion on the HOMO and charge accumulation on the LUMO</div></blockquote></div><br><br><br clear="all"><div><div><div dir="ltr">===================<br>Dr. Xiaochuan Ge (Giovanni)<div>Center for Functional Nanomaterials<br><div>Brookhaven national laboratory </div><div>===================</div></div></div></div></div>
</div></div>