<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=GB2312">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Dear pwscf users,<br>
    <br>
    I am trying to perform spin-polarized calculations using pwscf,
    following the tutorial for LSDA found here: <a
      class="moz-txt-link-freetext"
      href="http://www.fisica.uniud.it/%7Egiannozz/QE-Tutorial">http://www.fisica.uniud.it/~giannozz/QE-Tutorial</a>.
    Unfortunately, I am puzzled by several problems.<br>
    <br>
    <b>Q1. </b><b>Can pwscf perform spin-polarized calculations using
      GGA functionals?</b><br>
    I know this seems to be a stupid question, since spin-polarized GGA
    calculation should be one of the basic capabilities of an <i>ab
      inition </i>program. I checked the mannual for pwscf
    (INPUT_PW.html), and found that "npsin=2" enables "LSDA". Also, in
    the tutorial mentioned above, it reads "This approach goes under the
    name of Local Spin-Density Approximation, or LSDA, even when the
    functional E xc is based not on LDA but on GGA". I guess pwscf can
    do such calculations, but not convinced.<br>
    <br>
    <b>Q2. Why the results of "fixed magnetization</b><b>" and "</b><b>Unconstrained

      magnetization" are not consistent?</b><br>
    In the tutorial I read that there are two approaches to optimizing
    the magnetization. One is to vary the tot_magnetization mannually
    and to find the minimum of total energy, while in the other approach
    the total magnetization is determined during scf calculation by
    pwscf automatically. I tried both approaches for bulk silicon and
    magnisium oxide, which should be both non-magnetic, and found both
    approaches predicted non-magnetic groud state. However, for a 2x2x2
    super cell of MgO dopped with one atom of Sc(scandium), the fixed
    magnetization approach predicted the total magnetization should be 1
    bohr, while unstrained approach predicted it to be ~0.80. What's
    more, the value of smearing also affects the total magnetization for
    the second approach. Why are not they consistent? Which one should I
    trust?<br>
    <br>
    <b>Q3. </b><b>How to specify starting_magnetization(i)?</b><br>
    Are there any tricks to specify reasonable starting_magnetization
    for different atomic species? Perhaps the magnet momentum of an
    isolated atom is a good guess, but how to relate it to
    starting_magnetization? I guess that they are related by the
    equation "starting_magnetization = (nelec_spin_majority -
    nelec_spin_minority) / nelec_total", since for all spin-up case
    starting_magnetization is 1.0 and for all spin-down case it is -1.0.
    But I am not sure.<br>
    <br>
    <b>Q4. Should total magnetization always be intergers?</b><br>
    As mentioned in Q2, the total magnetization is fractional when
    unstrained magnetization approach is used. Since each electron
    carries one bohr of magneton, should the total magnetization always
    be integers?<br>
    <br>
    All suggestions are appreciated.<br>
    <br>
    Best,<br>
    Yunhai Li<br>
    <br>
    Department of Physics, Southeast University<br>
    Nanjing, Jiangsu Province, P.R.C.<br>
  
<br /><br />
<hr style='border:none; color:#909090; background-color:#B0B0B0; height: 1px; width: 99%;' />
<table style='border-collapse:collapse;border:none;'>
        <tr>
                <td style='border:none;padding:0px 15px 0px 8px'>
                        <a href="http://www.avast.com/">
                                <img border=0 src="http://static.avast.com/emails/avast-mail-stamp.png" />
                        </a>
                </td>
                <td>
                        <p style='color:#3d4d5a; font-family:"Calibri","Verdana","Arial","Helvetica"; font-size:12pt;'>
                                此电子邮件不含病毒和恶意软件,因为 <a href="http://www.avast.com/">avast! 杀毒软件</a> 保护处于活动状态。
                        </p>
                </td>
        </tr>
</table>
<br />
</body>
</html>