<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-cite-prefix">Dear Dmitry,<br>
          the total force che be calcualted from the unperturbed wfcs
      due to Hellmann-Feynman theorem that relies on the fact that total
      energy satisfy a variational principle.<br>
          no variational principle is defined for a component of the
      energy (Hubbard, Hartree , XC, Kinetic ...) therefore you can't
      calculate their derivatives from the unperturbed wfcs only.<br>
      <br>
      stefano<br>
      <br>
      On 10/23/2014 10:24 AM, Dmitry Novoselov wrote:<br>
    </div>
    <blockquote
cite="mid:CAAruPGXdAw42COvgwW=Fw3+vYonHUxxkq5VmGWN__geEGG2vJw@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div>Dear all,<br>
          <br>
        </div>
        I have performed the set of <span class="" id=":20p.1"
          tabindex="-1" style="">LSDA</span>+U calculations to determine
        the Hubbard forces acting on Ni atom in a <span lang="en"><span>well-known
            <span class="" id=":20p.2" tabindex="-1" style="">NiO</span>.<br>
          </span></span>
        <div>
          <div>For this purpose I was displacing one Ni atom in the
            x-direction up to 0.1 angstroms with 0.025 angstroms step.</div>
          <div><br>
          </div>
          <div>How we know a force may be evaluate like:<br>
            <div style="margin-left:40px">$F_{\alpha i} =
              -\frac{\partial E}{\partial \tau_{\alpha i}}$.<br>
            </div>
          </div>
          <div>That allows us to calculate a force by <span lang="en"><span>taking</span>
              a<span> numerical derivative of the energy </span></span><span
              lang="en">with respect to the displacement $</span><span
              lang="en">\tau_{\alpha i}$ by least square approximation
              for example.</span></div>
          <div><span lang="en"><br>
            </span></div>
          <div><span lang="en">If I make it for the total energy (see
              total_energy.<span class="" id=":20p.3" tabindex="-1"
                style="">eps</span>) I get a good agreement between
              analytical </span>(x-component for the displaced Ni atom)
            and numerical value of the total force (see total_force.<span
              class="" id=":20p.4" tabindex="-1" style="">eps</span>).</div>
          <div><span lang="en">But if I repeat it for the Hubbard energy
              (see <span class="" id=":20p.5" tabindex="-1" style="">hubbard</span>_energy.<span
                class="" id=":20p.6" tabindex="-1" style="">eps</span>)
              I get some discrepancy expressed in the mismatch between
              analytical (x-component for the displaced Ni atom) and
              numerical value of the Hubbard force (</span>see <span
              class="" id=":20p.7" tabindex="-1" style="">hubbard</span>_force.<span
              class="" id=":20p.8" tabindex="-1" style="">eps</span>)
            with -0.5 factor (see expected_<span class="" id=":20p.9"
              tabindex="-1" style="">hubbard</span>_force.<span class=""
              id=":20p.10" tabindex="-1" style="">eps</span>).</div>
          <div><br>
          </div>
          <div>What can be the reason for this discrepancy?<br>
          </div>
          <div><br>
          </div>
          <div>Thank you!</div>
          <div><br>
          </div>
          <div>P.S.</div>
          <div>The values of the energy and forces (x-component for the
            displaced Ni atom) obtained during the <span class=""
              id=":20p.11" tabindex="-1" style="">LSDA</span>+U
            calculation respect to the displacement of one Ni atom in
            the x-direction are contained in the attached file result.<span
              class="" id=":20p.12" tabindex="-1" style="">dat</span>. <br>
          </div>
          <div><br>
          </div>
          <div>-- <br>
            <div dir="ltr">
              <p><b><i><span
style="border-collapse:collapse;color:rgb(51,51,51);font-family:arial,sans-serif;font-size:13px;font-style:normal;font-weight:normal"></span></i></b></p>
              <div><i><span
style="border-collapse:collapse;color:rgb(51,51,51);font-family:arial,sans-serif;font-size:13px"><i>Best
                      regards,</i></span></i><br>
              </div>
              <div><i><span style="border-collapse:collapse"><i
                      style="color:rgb(51,51,51);font-family:arial,sans-serif;font-size:13px">Dr.
                      <span class="" id=":20p.13" tabindex="-1" style="">Dmitry</span>
                      <span class="" id=":20p.14" tabindex="-1" style="">Novoselov</span></i><br>
                    <br>
                    <font color="#333333" face="arial, sans-serif">Institute
                      for Metal Physics,</font></span></i></div>
              <div><i><span style="border-collapse:collapse"><font
                      color="#333333" face="arial, sans-serif">Yekaterinburg,
                      Russia</font></span></i></div>
            </div>
          </div>
        </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">_______________________________________________
Pw_forum mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Pw_forum@pwscf.org">Pw_forum@pwscf.org</a>
<a class="moz-txt-link-freetext" href="http://pwscf.org/mailman/listinfo/pw_forum">http://pwscf.org/mailman/listinfo/pw_forum</a></pre>
    </blockquote>
    <br>
  </body>
</html>