<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div>The spin-contributions are calculated separately (T_j) and at the end all contributions are summed up </div><div>and are weighted with their corresponding Brillouin-zone weight (wkpt, trans_tot) in do_cond.f90 -> T_tot. </div><div>So I guess, it is either something wrong with the BZ-weighting (see summary_tran.f90 and do_cond.f90) or with the </div><div>summation over iofspin (transmit.f90). You used nspin=2 in scf-calc and now separate the transmission by </div><div>spin-channel, so I guess it's the latter. </div><div>You should do a check for a simple (T_tot=2) non-metallic metal (eg. copper) and ferromagnetic metal (bcc iron) with both </div><div>nspin=1&2.</div><div><br></div><div>You said the results of the 5.01 version and the CVS version differ. Which CVS/SVN Revision are you using?</div><div><br></div><div><br></div><div><div>-------------------------------------------------------------</div><div>Nicki Frank Hinsche, Dr. rer. nat.</div><div>Institute of physics - Theoretical physics,</div><div>Martin-Luther-University Halle-Wittenberg,</div><div>Von-Seckendorff-Platz 1, Room 1.07<br>D-06120 Halle/Saale, Germany</div><div><div><div>Tel.: ++49 345 5525460</div><div>-------------------------------------------------------------</div></div></div></div><div><br></div><br><div><div>Am 12.06.2014 um 12:00 schrieb <a href="mailto:pw_forum-request@pwscf.org">pw_forum-request@pwscf.org</a>:</div><br class="Apple-interchange-newline"><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; font-size: medium; ">Date: Thu, 12 Jun 2014 08:38:31 +0200<br>From: Vladislav Borisov <<a href="mailto:vborisov@mpi-halle.mpg.de">vborisov@mpi-halle.mpg.de</a>><br>Subject: [Pw_forum] Transmission from PWCOND<br>To:<span class="Apple-converted-space"> </span><a href="mailto:pw_forum@pwscf.org">pw_forum@pwscf.org</a><br>Message-ID: <<a href="mailto:e99409ee66e329da56c59effeb2a7df3@mpi-halle.mpg.de">e99409ee66e329da56c59effeb2a7df3@mpi-halle.mpg.de</a>><br>Content-Type: text/plain; charset=UTF-8; format=flowed<br><br>Dear all,<br><br>I calculate the spin-polarized transmission for a tunnel junction<br>using the PWCOND code. The calculation is performed for each k-point<br>in the irreducible part of the Brillouin Zone separately.<br>At the end of each output file one sees the contributions to the<br>transmission from different propagating states (an example is shown<br>below for the 5.0.1 version of the code).<br><br>************************************************************<br>The input for PWCOND:<br><br> &inputcond<br> outdir = '/scratch/vborisov/tmp/test/',<br> prefixl = 'lead',<br> prefixs = 'scat',<br> tran_file = 'T-k1.Ef'<br> ikind = 1,<br> iofspin = 1,<br> energy0 = 0.00d0,<br> denergy = -0.01d0,<br> ewind = 2.d0,<br> epsproj = 1.d-7,<br> delgep = 1.d-7,<br> cutplot = 3.d0,<br> nz1 = 22,<br> bds = 9.667070904<br> /<br> 1<br> 0.00347222 0.00694445 1<br> 1<br><br><br>A part of the output:<br><br>--- E-Ef = 0.0000000 k = 0.0034722 0.0069444<br>--- ie = 1 ik = 1<br> Nchannels of the left tip = 1<br> Right moving states:<br> k1(2pi/a) k2(2pi/a) E-Ef (eV)<br> -0.3924556 0.0000000 0.0000000<br> Left moving states:<br> k1(2pi/a) k2(2pi/a) E-Ef (eV)<br> 0.3924556 0.0000000 0.0000000<br><br> to transmit<br> Band j to band i transmissions and reflections:<br> j i |T_ij|^2 |R_ij|^2<br><br> 1 --> 1 0.00014 0.99986<br> Total T_j, R_j = 0.00014 0.99986<br><br> E-Ef(ev), T = 0.0000000 0.0001402<br> Eigenchannel decomposition:<br># 1 0.00000 0.00014<br> 1.00000<br> T_tot 0.00000 0.28041E-03<br><br>************************************************************<br><br>From this output, one would conclude that the transmission for<br>this k-point equals 0.1402E-03. However, after this result comes<br>also the eigenchannel decomposition and the T_tot value, which<br>is twice as large and equals 0.28041E-03. The same behavior is<br>observed for every other k-point. However, this discrepancy<br>does not appear for the CVS version of the code.<br><br>Where does this factor of 2 come from in the older version?<br>Do the values of T_tot in these two versions always differ<br>by the same factor of 2?<br><br>I would very much appreciate any assistance with this problem.<br><br><br>With kind regards,<br>Vladislav Borisov<br><br>Max Planck Institute of Microstructure Physics<br>Weinberg 2, 06120, Halle (Saale), Germany<br>Tel No: +49 345 5525448<br>Fax No: +49 345 5525446<br>Email:<span class="Apple-converted-space"> </span><a href="mailto:vborisov@mpi-halle.mpg.de">vborisov@mpi-halle.mpg.de</a></span></blockquote></div><div apple-content-edited="true"> </div><br></body></html>