<html dir="ltr">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<style id="owaParaStyle" type="text/css">P {margin-top:0;margin-bottom:0;}</style>
</head>
<body ocsi="0" fpstyle="1" style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; ">
<div style="direction: ltr;font-family: Tahoma;color: #000000;font-size: 10pt;">1) You can parallelize on k points .. your cores are divided into pools of processors each taking care of a subset of k-points. Try to read some documentation by Prof. P. Giannozzi.
<div><br>
</div>
<div>2) Have a look also at Shobhana Narasimhan DFPT work on iron. It depends on which quantity you are interested in. If you want high accuracy on the phonon dispersion, of course you can go even at denser grids. However, thermodynamic quantities are obtained
via integration over frequencies in the reciprocal space, so that an approximate phonon dispersion is enough to get reliable thermodynamic results. You can try to check the free energy convergence w.r.t q-mesh (but it will take a bit). <br>
<div><br>
</div>
<div>3) You should always converge w.r.t your parameters according to the accuracy that YOU require. Again, try to converge the frequencies in a single q-point w.r.t this threshold. </div>
<div><br>
</div>
<div><span class="Apple-tab-span" style="white-space:pre"></span> Daniele
<br>
</div>
<div><br>
<div style="font-family:Tahoma; font-size:13px">
<div>
<div>
<div><font class="Apple-style-span" size="2" color="#333333">__________________________________________</font></div>
<div><font class="Apple-style-span" size="2" color="#333333"><br>
</font></div>
<div><font class="Apple-style-span" size="2" color="#333333">Daniele Francesco Dragoni</font></div>
<div><font class="Apple-style-span" size="2" color="#333333">Laboratoire de théorie et simulation des matériaux</font></div>
<div><font class="Apple-style-span" size="2" color="#333333">Swiss Federal Institute of Technology </font></div>
<div><font class="Apple-style-span" size="2" color="#333333">EPFL STI IMX THEOS</font></div>
<div><font class="Apple-style-span" size="2" color="#333333">MXC 318<br>
Station 12<br>
</font></div>
<div><font class="Apple-style-span" size="2" color="#333333">CH-1015, Lausanne</font></div>
<div><font class="Apple-style-span" size="2" color="#333333"><br>
</font></div>
</div>
</div>
</div>
<br>
<br>
<div>
<div>On Oct 28, 2013, at 10:24 AM, Иван Булдашев wrote:</div>
<br class="Apple-interchange-newline">
<blockquote type="cite">
<div>Dear users, thanks for your replies, but I had some questions yet.<br>
Firstly, with one Fe atom in BCC cell and 4x4x4 k-point grid my task <br>
works faster, but it took two days. Are there any reasons for so long <br>
calculation?<br>
<br>
<blockquote type="cite">
<blockquote type="cite">For iron on 48 cores I would probably parallelize on k-points using
<br>
</blockquote>
</blockquote>
npools, if the memory allows.<br>
<br>
I do not use it. If I understand right, the key "-npool" can accelerate <br>
calculation, because it divide process?<br>
<br>
<blockquote type="cite">
<blockquote type="cite">You are using a 8x8x8 grid in the cubic cell, do you really need it
<br>
</blockquote>
</blockquote>
for thermodynamic quantities?<br>
<br>
My calculation was based on paper Tilmann Hickel and Joerg Neugebauer, <br>
they used PHON (small displacement method) and took big grid. And I <br>
can't find the same work with QE using. Can I get high accuracy with <br>
4x4x4 grid?<br>
<br>
<blockquote type="cite">
<blockquote type="cite">As you see, even if it costs a bit more, I use a more strict
<br>
</blockquote>
</blockquote>
convergence threshold. Try to decrease your value.<br>
<br>
I try 1e-16 and it works very long. Can I get same accuracy with <br>
threshold = 1e-12?<br>
_______________________________________________<br>
Pw_forum mailing list<br>
<a href="mailto:Pw_forum@pwscf.org">Pw_forum@pwscf.org</a><br>
<a href="http://pwscf.org/mailman/listinfo/pw_forum">http://pwscf.org/mailman/listinfo/pw_forum</a><br>
</div>
</blockquote>
</div>
<br>
</div>
</div>
</div>
</body>
</html>