<html>
<head>
<style><!--
.hmmessage P
{
margin:0px;
padding:0px
}
body.hmmessage
{
font-size: 10pt;
font-family:Tahoma
}
--></style></head>
<body class='hmmessage'><div dir='ltr'>
Dear Stefano,<br><br>That's great. In any case, I learnt too much from you and from many others on this forum.<br><br>Thank you,<br>Ali<br><br><div><div id="SkyDrivePlaceholder"></div>> Date: Mon, 25 Feb 2013 15:05:14 +0100<br>> From: degironc@sissa.it<br>> To: pw_forum@pwscf.org<br>> Subject: Re: [Pw_forum] Technique for converging Ecut and K-points?<br>> <br>> Dear All,<br>>      My previous post was actually more intended as an answer to Ben <br>> Palmer question than a comment to<br>> Ali Kachmar contribution. Sorry.<br>>      best regards,<br>>       stefano<br>> <br>> <br>> On 02/25/2013 02:58 PM, Stefano de Gironcoli wrote:<br>> > Dear Ali Kachmar,<br>> ><br>> > convergence w.r.t. ecutwfc (and ecutrho) and convergence w.r.t. <br>> > k-points sampling are rather independent issues and can be tested to a <br>> > large extent separately<br>> ><br>> > - convergence w.r.t. ecutwfc and ecutrho is  a property depending on <br>> > the highest Fourier components that are needed to describe the <br>> > wavefunctions and the density of your system.  his depends on the <br>> > pseudopotentials that are present in the calculation and do not depend <br>> > strongly, for a given set of pseudopotentials, on the particular <br>> > configuration because it depends mostly on the behaviour of the wfc in <br>> > the core region which is quite insensitive (in terms of shape) on the <br>> > environment.<br>> > So each pseudopotential has a required cutoff. An upperbound to this <br>> > value can be determined from any system that contains that pseudo.<br>> > The cutoff needed for a system containing several species is the <br>> > highest among those needed for each element.<br>> > Moreover, in US pseudo or PAW the charge density has contributions <br>> > from localized terms that may (an usually do in USPP) require quite <br>> > higher cutoff than the one needed for psi**2 (4*ecutwfc) ... hence the <br>> > possibility to vary and test independently for ecutrho ...<br>> ><br>> > My recommended strategy to fix ecutwfc and ecutrho is to perform total <br>> > energy (and possibly, force and stress) covergence test increasing <br>> > ecutwfc keeping ecutrho at its default vaule (=4*ecutwfc)  until <br>> > satisfactory stability is reached (typically ~1 mry/atom in the <br>> > energy, 1.d-4 ry/au in the forces, a fraction of a KBar in the stress) <br>> > ...  this fixes the converged value of ecutrho to 4 times the <br>> > resulting ecutwfc.<br>> > Now keeping this value for ecutrho one can try to reduce ecutwfc and <br>> > see how much this can be done without deteriorating the convergence.<br>> ><br>> > -convergence with respect to k-points is a property of the band <br>> > structure.<br>> > I would study it after the ecutwfc/ecutrho issue is settled but some <br>> > fairly accurate parameters can be obtained even with reasonable but <br>> > not optimal cutoff parameters.<br>> ><br>> > There is a big difference between convergence in a band insulator or <br>> > in a metal.<br>> ><br>> > In an insulator bands are completely occupied or empty across the BZ <br>> > and charge density can be written in terms of wannier functions that <br>> > are exponentially localized in real space.<br>> > Hence the convergence w.r.t the density of point in the different <br>> > directions in the BZ should be exponentially fast and anyway quite <br>> > quick...<br>> ><br>> > In a metal the need to sample only a portion of the BZ would require <br>> > an extremely dense set of k points in order to locate accurately the <br>> > Fermi surface. This  induces to introduce a smearing width that smooth <br>> > the integral to be performed... the larger the smearing width, the <br>> > smoother the function, and the faster the convergence results...<br>> > however the larger the smearing width the farther the result is going <br>> > to be from the accurate, zero smearing width, result that one would <br>> > desire.<br>> > Therefore different shapes fro the smearing functions have been <br>> > proposed to alleviate this problem and<br>> > Marzari-Vanderbilt and Methfessel-Paxton  smearing functions give a <br>> > quite mild dependence of the (k-point converged) total energy as a <br>> > function of the smearing width thus being good choices for metals.<br>> ><br>> > My recommended strategy for fix the k-point sampling in metals is<br>> > 1) chose the smearing function type  (mv or mp, recomended)<br>> > 2) for decreasing values of the smearing width (let's say from an high <br>> > value of 0.1  ry = 1.36 eV to a low value of 0.01 - 0.005 ry = <br>> > 0.136-0.068 eV if feasable) CONVERGE the total energy w.r.t to <br>> > smearing well within the global desired tolerance (of 1 mry/atom, for <br>> > instance)<br>> > 3) by examining the behaviour of the CONVERGED Energy vs smearing <br>> > width curve E(sigma) identify the smearing width for which E(sigma) is <br>> > within tolerance w.r.t. E(sigma==0) keeping in mind that for <br>> > methfessel-paxton E(sigma) ~ E(0) + A*sigma**4 + o(sigma**6) while for <br>> > marzari-vanderbilt the dependence is more likely E(sigma) ~ E(0) <br>> > +A*sigma**3 + o(sigma**4).<br>> > 4) select that value of the smearing width and the smallest set of <br>> > k-points for which this is converged.<br>> ><br>> > HTH<br>> ><br>> > stefano<br>> ><br>> ><br>> ><br>> > On 02/24/2013 06:54 PM, Ali KACHMAR wrote:<br>> >> Hi,<br>> >><br>> >> as far as I know, there is no any techinques for choosing ecut and <br>> >> k-points.  Please have a look at the pwscf archive and make up a <br>> >> conclusion.<br>> >><br>> >> Best,<br>> >> Ali<br>> >><br>> >>> Date: Sat, 23 Feb 2013 19:55:51 +0000<br>> >>> From:benpalmer1983@gmail.com<br>> >>> To:pw_forum@pwscf.org<br>> >>> Subject: [Pw_forum] Technique for converging Ecut and K-points?<br>> >>><br>> >>> Hi everyone,<br>> >>><br>> >>> I just wanted to ask if users have any techniques for choosing ecut and<br>> >>> k-points?  I've read that one way would be to start with a high number<br>> >>> of k-points and high energy cutoff, and use that energy as an almost<br>> >>> true value.  Then adjust k-points and energy cutoff from a lower<br>> >>> number/cutoff until it converges to the true value.  Would you try to<br>> >>> converge energy cutoff first, or k-points?  Does it matter which you<br>> >>> converge first?<br>> >>><br>> >>> Thanks<br>> >>><br>> >>> Ben Palmer<br>> >>> Student @ University of Birmingham<br>> >>> _______________________________________________<br>> >>> Pw_forum mailing list<br>> >>> Pw_forum@pwscf.org<br>> >>> http://pwscf.org/mailman/listinfo/pw_forum<br>> >><br>> >><br>> >><br>> >> _______________________________________________<br>> >> Pw_forum mailing list<br>> >> Pw_forum@pwscf.org<br>> >> http://pwscf.org/mailman/listinfo/pw_forum<br>> ><br>> ><br>> <br>> _______________________________________________<br>> Pw_forum mailing list<br>> Pw_forum@pwscf.org<br>> http://pwscf.org/mailman/listinfo/pw_forum<br></div>                                     </div></body>
</html>