
Sham, 1965). This approximation has turned out to be
much more successful than originally expected (see, for
instance, Jones and Gunnarsson, 1989), in spite of its
extreme simplicity. For weakly correlated materials,
such as semiconductors and simple metals, the LDA ac-
curately describes structural and vibrational properties:
the correct structure is usually found to have the lowest
energy, while bond lengths, bulk moduli, and phonon
frequencies are accurate to within a few percent.

The LDA also has some well-known drawbacks. A
large overestimate (;20%) of the crystal cohesive and
molecular binding energies is possibly the worst failure
of this approximation, together with its inability to prop-
erly describe strongly correlated systems, such as
transition-metal oxides. Much effort has been put into
the search for better functionals than the LDA (see, for
instance, Perdew et al., 1999). The use of gradient cor-
rections (Becke, 1988; Perdew et al., 1996) to the LDA
has become widespread in recent years. Gradient cor-
rections are generally found to improve the account of
electron correlations in finite or semi-infinite systems,
such as molecules or surfaces; they are less helpful in
infinite solids.

In general, DFT is a ground-state theory and Kohn-
Sham eigenvalues and eigenvectors do not have a well-
defined physical meaning. Nevertheless, for lack of bet-
ter and equally general methods, Kohn-Sham
eigenvalues are often used to estimate excitation ener-
gies. The features of the low-lying energy bands in solids
obtained in this way are generally considered to be at
least qualitatively correct, in spite of the fact that the
LDA is known to substantially underestimate the optical
gaps in insulators.

C. Linear response

In Sec. II.A, Eq. (10), we have seen that the electron-
density linear response of a system determines the ma-
trix of its interatomic force constants. Let us see now
how this response can be obtained within density-
functional theory. The procedure described in the fol-
lowing is usually referred to as density-functional pertur-
bation theory (DFPT; Zein, 1984; Baroni et al., 1987a;
Gonze, 1995b).

In order to simplify the notation and make the argu-
ment more general, we assume that the external poten-
tial acting on the electrons is a differentiable function of
a set of parameters, l[$l i% (l i[RI in the case of lattice
dynamics). According to the Hellmann-Feynman theo-
rem, the first and second derivatives of the ground-state
energy read

]E

]l i
5E ]Vl~r!

]l i
nl~r!dr, (21)

]2E

]l i]l j
5E ]2Vl~r!

]l i]l j
nl~r!dr1E ]nl~r!

]l i

]Vl~r!

]l j
dr.

(22)

The electron-density response, ]nl(r)/]l i , appearing in
Eq. (22) can be evaluated by linearizing Eqs. (16), (15),

and (13) with respect to wave function, density, and po-
tential variations. Linearization of Eq. (16) leads to

Dn~r!54 Re (
n51

N/2

cn* ~r!Dcn~r!, (23)

where the finite-difference operator Dl is defined as

DlF5(
i

]Fl

]l i
Dl i . (24)

The superscript l has been omitted in Eq. (23), as well
as in any subsequent formulas where such an omission
does not give rise to ambiguities. Since the external po-
tential (both unperturbed and perturbed) is real, each
Kohn-Sham eigenfunction and its complex conjugate are
degenerate. As a consequence, the imaginary part of the
sum appearing in Eq. (23) vanishes, so that the prescrip-
tion to keep only the real part can be dropped.

The variation of the Kohn-Sham orbitals, Dcn(r), is
obtained by standard first-order perturbation theory
(Messiah, 1962):

~HSCF2en!uDcn&52~DVSCF2Den!ucn&, (25)

where

HSCF52
\2

2m

]2

]r2 1VSCF~r! (26)

is the unperturbed Kohn-Sham Hamiltonian,

DVSCF~r!5DV~r!1e2E Dn~r8!

ur2r8u
dr8

1
dvxc~n !

dn U
n5n(r)

Dn~r! (27)

is the first-order correction to the self-consistent poten-
tial, and Den5^cnuDVSCFucn& is the first-order variation
of the Kohn-Sham eigenvalue en .

In the atomic physics literature, an equation analo-
gous to Eq. (25) is known as the Sternheimer equation,
after the work in which it was first used to calculate
atomic polarizabilities (Sternheimer, 1954). A self-
consistent version of the Sternheimer equation was in-
troduced by Mahan (1980) to calculate atomic polariz-
abilities within density-functional theory in the LDA.
Similar methods are known in the quantum chemistry
literature under the generic name of analytic evaluation
of second-order energy derivatives (Gerratt and Mills,
1968; Amos, 1987). In the specific context of the
Hartree-Fock approximation, the resulting algorithm is
called the coupled Hartree-Fock method (Gerratt and
Mills, 1968).

Equations (23)–(27) form a set of self-consistent
equations for the perturbed system completely analo-
gous to the Kohn-Sham equations in the unperturbed
case—Eqs. (13), (15), and (16)—with the Kohn-Sham
eigenvalue equation, Eq. (15), being replaced by the so-
lution of a linear system, Eq. (25). In the present case,
the self-consistency requirement manifests itself in the
dependence of the right-hand side upon the solution of
the linear system. As DVSCF(r) is a linear functional of
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Dn(r), which in turn depends linearly on the Dc’s, the
whole self-consistent calculation can be cast in terms of
a generalized linear problem. Note, however, that the
right-hand side of Eq. (25) for Dcn depends through Dn
on the solution of all the similar equations holding for
the Dcm (mÞn). Hence all the N equations, Eq. (25),
are linearly coupled to each other, and the set of all the
Dc’s is the solution of a linear problem whose dimen-
sion is (NM/23NM/2), M being the size of the basis set
used to describe the c’s. The explicit form of this big
linear equation can be worked out directly from Eqs.
(23)–(27), or it can equivalently be derived from a varia-
tional principle, as explained in Sec. II.C.3. Whether this
large linear system is better solved directly by iterative
methods or by the self-consistent solution of the smaller
linear systems given by Eq. (25) is a matter of computa-
tional strategy.

The first-order correction to a given eigenfunction of
the Schrödinger equation, given by Eq. (25), is often
expressed in terms of a sum over the spectrum of the
unperturbed Hamiltonian,

Dcn~r!5 (
mÞn

cm~r!
^cmuDVSCFucn&

en2em
(28)

running over all the states of the system, occupied and
empty, with the exception of the state being considered,
for which the energy denominator would vanish. Using
Eq. (28), the electron charge-density response, Eq. (23),
can be cast into the form

Dn~r!54 (
n51

N/2

(
mÞn

cn* ~r!cm~r!
^cmuDVSCFucn&

en2em
.

(29)

Equation (29) shows that the contributions to the
electron-density response coming from products of oc-
cupied states cancel each other, so that the m index can
be thought of as attaching to conduction states only.
This is equivalent to saying that the electron-density dis-
tribution does not respond to a perturbation, which acts
only on the occupied-state manifold (or, more generally,
to the component of any perturbation which couples oc-
cupied states among each other).

The explicit evaluation of Dcn(r) from Eq. (28)
would require a knowledge of the full spectrum of the
Kohn-Sham Hamiltonian and extensive summations
over conduction bands. In Eq. (25), instead, only knowl-
edge of the occupied states of the system is needed to
construct the right-hand side of the equation, and effi-
cient iterative algorithms—such as the conjugate gradi-
ent (Press et al., 1989; Štich et al., 1989; Payne et al.,
1992) or minimal residual (Press et al. 1989; Saad and
Schultz, 1986) methods—can be used for solution of the
linear system. In this way the computational cost of de-
termining of the density response to a single perturba-
tion is of the same order as that needed to calculate the
unperturbed ground-state density.

The left-hand side of Eq. (25) is singular because the
linear operator appearing therein has a null eigenvalue.
However, we saw above that the response of the system

to an external perturbation depends only on the compo-
nent of the perturbation that couples the occupied-state
manifold with the empty-state one. The projection onto
the empty-state manifold of the first-order correction to
occupied orbitals can be obtained from Eq. (25) by re-
placing its right-hand side with 2PcDVSCFucn&, where
Pc is the projector onto the empty-state manifold, and
by adding to the linear operator on its left-hand side
HSCF2en , a multiple of the projector onto the
occupied-state manifold, Pv , so as to make it nonsingu-
lar:

~HSCF1aPv2en!uDcn&52PcDVSCFucn&. (30)

In practice, if the linear system is solved by the
conjugate-gradient or any other iterative method and
the trial solution is chosen orthogonal to the occupied-
state manifold, orthogonality is maintained during itera-
tion without regard for the extra Pv term on the left-
hand side of Eq. (30).

The above discussion applies to insulators in which
the gap is finite. In metals a finite density of states
(DOS) occurs at the Fermi energy, and a change in the
orbital occupation number may occur upon the applica-
tion of an infinitesimal perturbation. The modifications
of DFPT needed to treat the linear response of metals
have been discussed by de Gironcoli (1995) and will be
presented in some detail in Sec. II.C.4.

1. Monochromatic perturbations

One of the greatest advantages of DFPT—as com-
pared to other nonperturbative methods for calculating
the vibrational properties of crystalline solids (such as
the frozen-phonon or molecular-dynamics spectral
analysis methods)—is that within DFPT the responses to
perturbations of different wavelengths are decoupled.
This feature allows one to calculate phonon frequencies
at arbitrary wave vectors q avoiding the use of supercells
and with a workload that is essentially independent of
the phonon wavelength. To see this in some detail, we
first rewrite Eq. (30) by explicitly indicating the wave
vector k and band index v of the unperturbed wave
function cv

k , and by projecting both sides of the equa-
tion over the manifold of states of wave vector k1q.
Translational invariance requires that the projector onto
the k1q manifold, Pk1q, commute with HSCF and with
the projectors onto the occupied- and empty-state mani-
folds, Pv and Pc . By indicating with Pk1qPv5Pv

k1q and
Pk1qPc5Pc

k1q the projectors onto the occupied and
empty states of wave vector k1q, one can rewrite Eq.
(30) as

~HSCF1aPv
k1q2ev

k!uDcv
k1q&52Pc

k1qDVSCFucv
k&,

(31)

where uDcv
k1q&5Pk1quDcv

k& . When one decomposes the
perturbing potential DVSCF into Fourier components,

DVSCF~r!5(
q

DvSCF
q ~r!eiq•r, (32)
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