<div><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">> When I use supercell: simple cubic with 8 atoms to build silicon</span><br style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">> structure, the omega is different at gamma point with the omega from</span><br style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">> the structure with FCC.</span></div><div><br></div><div>This is same kind of question i asked about AFM material. sc is giving 8x3=24 modes of vibrations.</div>
<div>fcc gives 2x3=6 modes and these are different.<br style="background-color:rgb(255,255,255)"><br><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">>in order to get exactly the same number, you have to use either</span><br style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">>a converged grid of k-points, or exactly the same k-points.</span></div><div><br></div><div>i try the example 2 of silicon which has 10 k-points mentioned in it for both sc and fcc.</div>
<div><br></div><div>still vibrational modes are different. for sc it gives</div><div><br></div><div><div> Mode symmetry, T_d (-43m) point group:</div><div><br></div><div> omega( 1 - 3) = 9.5 [cm-1] --> T_2 G_15 P_4 I+R</div>
<div> omega( 4 - 6) = 140.4 [cm-1] --> T_1 G_25 P_5</div><div> omega( 7 - 9) = 140.7 [cm-1] --> T_2 G_15 P_4 I+R</div><div> omega( 10 - 12) = 408.2 [cm-1] --> A_1 G_1 P_1 R</div>
<div> omega( 10 - 12) = 408.2 [cm-1] --> E G_12 P_3 R</div><div> omega( 13 - 15) = 408.3 [cm-1] --> T_2 G_15 P_4 I+R</div><div> omega( 16 - 18) = 458.4 [cm-1] --> T_1 G_25 P_5</div>
<div> omega( 19 - 21) = 458.5 [cm-1] --> T_2 G_15 P_4 I+R</div><div> omega( 22 - 24) = 510.2 [cm-1] --> T_2 G_15 P_4 I+R</div></div><div><br></div><div>for fcc it gives</div><div><br>
</div><div><div> Mode symmetry, O_h (m-3m) point group:</div><div><br></div><div> omega( 1 - 3) = 3.2 [cm-1] --> T_1u G_15 G_4- I</div><div> omega( 4 - 6) = 510.2 [cm-1] --> T_2g G_25' G_5+ R</div>
</div><div><br></div><div>any suggestions please</div><div><br></div><div><br></div><div><br></div><div><br></div><br clear="all">Karandeep<br>Research Scholar<br>Physics Department,<br>IIT, Delhi<br>