Dear Chan-Woo.<br>The n matrix is always hermitian, it is clear from definition. In the case of<br>collinear LSDA there is always psi_sigma --> psi_sigma* symmetry, due <br>to hermicity of Hamiltonians for each spin, which can be considered as the time-reversal operation. This is why you always have k --> -k symmetry <br>
even if you do not have inversion operation. Because of this time-reversal symmetry one can readily see that the n matrix should be real.<br>It is not anymore the case in general noncollinear calculation where the occupation matrix is in general complex (and hermitian).<br>
<br>Concerning negative eigenvalues, I think they are just small numbers, probably due to computational errors, which should be thought of as 0.<br><br>regards,<br>Alexander <br><br><br><div class="gmail_quote">Le 1 mars 2012 20:56, Chan-Woo Lee <span dir="ltr"><<a href="mailto:cwandtj@gmail.com">cwandtj@gmail.com</a>></span> a écrit :<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div link="blue" vlink="purple" lang="EN-US"><div><p class="MsoNormal">Dear QE developers and users,<u></u><u></u></p><p class="MsoNormal">
<u></u> <u></u></p><p class="MsoNormal">I have a question in understanding occupation matrix from LDA+U output file.<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">1) Definition of occupation matrix, n is:<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"> n= \sum{f<psi|phi_i><phi_j><psi>}, where psi is KS eigenstates, phi_i is atomic orbital of i orbital, f is scaling factor. As i and j from phi_i and phi_j don’t have to be identical, I think it’s not guaranteed that elements in n matrix are always real… However, in the QE output, they are all shown as real numbers. In new_ns.f90, I can find that n (nr and ns) are defined as real numbers but I can’t find any restrictions other than this. <u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">2) While elements in the matrix are real, some of them are “negative”. How can I understand this? I found one paper about multiconfigurational character of wave functions (<a href="http://jcp.aip.org/resource/1/jcpsa6/v110/i9/p4199_s1" target="_blank">http://jcp.aip.org/resource/1/jcpsa6/v110/i9/p4199_s1</a> ) but it’s beyond my scope. <u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">Did I miss something? Any suggestions and advices will truly be appreciated…<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">Sincerely,<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">Chan-Woo<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><i><span style="font-size:10.0pt;font-family:"Arial","sans-serif"">-------<br>
Chan-Woo Lee, Ph.D.<u></u><u></u></span></i></p><p class="MsoNormal"><i><span style="font-size:10.0pt;font-family:"Arial","sans-serif"">Postdoctoral Research Associate<u></u><u></u></span></i></p><p class="MsoNormal">
<i><span style="font-size:10.0pt;font-family:"Arial","sans-serif""><u></u> <u></u></span></i></p><p class="MsoNormal"><i><span style="font-size:10.0pt;font-family:"Arial","sans-serif"">Department of Chemistry<br>
University of Pennsylvania<br>231 South 34th Street<br>Philadelphia, PA 19104-6323 <br>Phone: <a href="tel:1-215-898-3564" value="+12158983564" target="_blank">1-215-898-3564</a> (Office)<br></span></i><span style="font-size:10.0pt;font-family:"Arial","sans-serif"">Email: <a href="mailto:leechanw@sas.upenn.edu" target="_blank"><span style="color:blue">leechanw@sas.upenn.edu</span></a> / <a href="mailto:cwandtj@gmail.com" target="_blank"><span style="color:blue">cwandtj@gmail.com</span></a><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial","sans-serif""><u></u> <u></u></span></p><p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial","sans-serif""><u></u> <u></u></span></p>
<p class="MsoNormal"><u></u> <u></u></p></div></div><br>_______________________________________________<br>
Pw_forum mailing list<br>
<a href="mailto:Pw_forum@pwscf.org">Pw_forum@pwscf.org</a><br>
<a href="http://www.democritos.it/mailman/listinfo/pw_forum" target="_blank">http://www.democritos.it/mailman/listinfo/pw_forum</a><br>
<br></blockquote></div><br>