<br><br><div class="gmail_quote">On Fri, Feb 10, 2012 at 6:37 PM, Paolo Giannozzi <span dir="ltr"><<a href="mailto:giannozz@democritos.it">giannozz@democritos.it</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0pt 0pt 0pt 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div class="im"><br>
On Feb 10, 2012, at 24:32 , Suza W wrote:<br>
<br>
> For example, after the above algebra, we get, these well-<br>
> arranged eigen displacements<br>
</div>> [...]<br>
<div class="im">> ,whereas the initial eigen-vectors that QE code prints directly<br>
> (which is indeed messy)<br>
<br>
</div>if you have degenerate eigenvalues, any linear combination of<br>
eigenvectors<br>
in the degenerate subspace is a solution. What you get from numerical<br>
diagonalization depends upon the phase of the moon.<br>
<br>
</blockquote><div><br>Dear Prof. Paolo Giannozzi and ALL QE users,<br><br>If i use "dynmat.x", and use q=0,0,0 point (gamma), i get corrected eigen values and <br>eigen vectors. It seems to me that ASR is applied to eigen vectors, because <br>
they are different (more or less) from eigen vectors obtained from conventional <br>"phonon.x" output. Is it so ?<br><br>However this difference could affect properties depending upon eigen vectors or eigen <br>
displacements. Am i right ?<br><br>One Basic question: <br>since eigen values and eigen vectors are related to eech other through <br>eigen values equation, Ax-\{Lamda}Ix=O. So, if x is changing(corrected) after using <br>
dynmax.x (imposing ASR), then why not eigen values are corrected ? <br>or is there any linear combination of eigen vectors is used in the procedure of ASR <br>so as to get the same
eigenvalue \Lamda.<br><br>with kind regards,<br>SK<br><br></div></div>==========================================<br>Sonu Kumar<br>Phd Student,Physics Department<br>Indian Institute of Technology ,Delhi-110016, India<br>web:-<a href="http://www.iitd.ac.in/" target="_blank">http://www.iitd.ac.in/</a><br>
==========================================<br>