SYMMETRY

Point-group symmetry operations. The action of a crystal symmetry operation \hat{S} on coordinates is given by:

$$
(\hat{S} \mathbf{r}) \equiv \mathbf{r}^{\prime}=O^{-1} \mathbf{r}-\mathbf{f} \longrightarrow \mathbf{r}_{\alpha}^{\prime}=O_{\alpha \beta}^{-1} r_{\beta}-f_{\alpha}=O_{\beta \alpha} r_{\beta}-f_{\alpha}
$$

where O is a real unitary matrix generating a rotation $\left(O^{-1}=O^{\dagger}\right), \mathbf{f}$ is a fractional translation. Let us transform to crystal coordinates:

$$
\mathbf{r}=s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+s_{3} \mathbf{a}_{3}, \quad s_{i}=\mathbf{b}_{i} \cdot \mathbf{r}, \quad \text { and } \quad t_{i}=\mathbf{b}_{i} \cdot \mathbf{f}
$$

where \mathbf{a}_{i} and \mathbf{b}_{j} are the primitive vectors for the direct and reciprocal lattice, respectively. Since \mathbf{a}_{i} are in a_{0} units and \mathbf{b}_{j} in $2 \pi / a_{0}$ units, $\mathbf{a}_{i} \cdot \mathbf{b}_{j}=\delta_{i j}$ holds. Then, in crystal coordinates:

$$
s_{i}^{\prime}=\mathbf{b}_{i} \cdot \mathbf{r}^{\prime}=b_{i \alpha} O_{\beta \alpha} s_{j} a_{j \beta}-\mathbf{b}_{i} \cdot \mathbf{f}
$$

that is,

$$
s_{i}^{\prime}=S_{j i} s_{j}-t_{i}, \quad S_{j i}=a_{j \beta} O_{\beta \alpha} b_{i \alpha} .
$$

The reverse transformation from crystal to cartesian coordinates is:

$$
O_{\beta \alpha}=a_{i \alpha} S_{j i} b_{j \beta}
$$

The product of two symmetry operations $S^{(1)}$ and $S^{(2)}$:

$$
s_{i}^{\prime}=S_{j i}^{(1)} s_{j}-t_{i}^{(1)}, \quad s_{l}^{\prime \prime}=S_{i l}^{(2)} s_{i}^{\prime}-t_{l}^{(2)}=S_{i l}^{(2)} S_{j i}^{(1)} s_{j}-S_{i l}^{(2)} t_{i}^{(1)}-t_{l}^{(2)}
$$

so

$$
S_{j l}=S_{j i}^{(1)} S_{i l}^{(2)}, \quad t_{l}=S_{i l}^{(2)} t_{i}^{(1)}+t_{l}^{(2)}
$$

Symmetrization in G-space. Effect of symmetry on Kohn-Sham orbitals:

$$
\hat{S} \psi(\mathbf{r})=\psi\left(O^{-1} \mathbf{r}-\mathbf{f}\right) .
$$

Orbitals are Bloch states with wavevector \mathbf{k}, expanded into a plane-wave basis set:

$$
\psi_{\mathbf{k}}(\mathbf{r})=\sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}) e^{i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}}
$$

thus:

$$
\begin{aligned}
\hat{S} \psi_{k}(\mathbf{r}) & =\sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}) e^{i(\mathbf{k}+\mathbf{G}) \cdot\left(O^{-1} \mathbf{r}-\mathbf{f}\right)} \\
& =\sum_{\mathbf{G}} c_{\mathbf{k}}(\mathbf{G}) e^{-i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{f}} e^{i O(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}} \\
& =\sum_{\mathbf{G}}\left(c_{\mathbf{k}}\left(O^{-1} \mathbf{G}\right) e^{-i\left(\mathbf{k}+O^{-1} \mathbf{G}\right) \cdot \mathbf{f}}\right) e^{i(O \mathbf{k}+\mathbf{G}) \cdot \mathbf{r}},
\end{aligned}
$$

that is:

$$
\hat{S} \psi_{\mathbf{k}}(\mathbf{r}) \equiv \psi_{O \mathbf{k}}(\mathbf{r}), \quad c_{O \mathbf{k}}(\mathbf{G})=c_{\mathbf{k}}\left(O^{-1} \mathbf{G}\right) e^{-i\left(\mathbf{k}+O^{-1} \mathbf{G}\right) \cdot \mathbf{f}}
$$

Let us move to crystal coordinates. For G-vectors and k-points:

$$
\mathbf{G}=h_{1} \mathbf{b}_{1}+h_{2} \mathbf{b}_{2}+h_{3} \mathbf{b}_{3}, \quad h_{i}=\mathbf{a}_{i} \cdot \mathbf{G}, \quad \text { and } \quad \chi_{i}=\mathbf{a}_{i} \cdot \mathbf{k},
$$

and (note the reversed indices wrt the real-space case)

$$
h_{i}^{\prime}=a_{i \alpha} O_{\beta \alpha} h_{j} b_{j \beta}=a_{i \alpha}\left(a_{k \beta} S_{l k} b_{l \alpha}\right) b_{j \beta} h_{j}=S_{i j} h_{j} .
$$

Symmetrization of the charge density. Let us introduce the non-symmetrized charge density

$$
\rho^{n s}(\mathbf{r})=\sum_{\mathbf{k} \in I B Z} w_{\mathbf{k}}\left|\psi_{\mathbf{k}}(\mathbf{r})\right|^{2},
$$

where the sum is over the Irreducible Brillouin Zone and $w_{\mathbf{k}}$ are the weights of the \mathbf{k}-points (i.e. how many independent k-points there are in the star of \mathbf{k}). The true charge density is given by

$$
\rho(\mathbf{r})=\frac{1}{N_{s}} \sum_{\hat{S}}\left(\hat{S} \rho^{n s}(\mathbf{r})\right)=\frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \rho^{n s}\left(O_{n}^{-1} \mathbf{r}-\mathbf{f}_{n}\right),
$$

where N_{s} is the number of symmetry operations in the group. Since the charge density is symmetric, $\hat{S} \rho(\mathbf{r})=\rho\left(O_{n}^{-1} \mathbf{r}-\mathbf{f}_{n}\right)=\rho(\mathbf{r})$ holds.

In G-space, one has

$$
\hat{S} \rho^{n s}(\mathbf{r})=\sum_{\mathbf{G}} \rho^{n s}(\mathbf{G}) e^{i \mathbf{G} \cdot\left(O^{-1} \mathbf{r}-\mathbf{f}\right)}=\sum_{\mathbf{G}}\left(\rho^{n s}\left(O^{-1} \mathbf{G}\right) e^{-i O^{-1} \mathbf{G} \cdot \mathbf{f}}\right) e^{i \mathbf{G} \cdot \mathbf{r}}
$$

that is:

$$
\rho(\mathbf{G})=\frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \rho^{n s}\left(O_{n}^{-1} \mathbf{G}\right) e^{-i O_{n}^{-1} \mathbf{G} \cdot \mathbf{f}_{n}} .
$$

Since the charge density is symmetric,

$$
\hat{S} \rho(\mathbf{r})=\sum_{\mathbf{G}} \rho(\mathbf{G}) e^{i \mathbf{G} \cdot\left(O^{-1} \mathbf{r}-\mathbf{f}\right)}=\sum_{\mathbf{G}} \rho\left(O^{-1} \mathbf{G}\right) e^{-i O^{-1} \mathbf{G} \cdot \mathbf{f}} e^{i \mathbf{G} \cdot \mathbf{r}},
$$

that is, $\rho\left(O^{-1} \mathbf{G}\right)=\rho(\mathbf{G}) e^{i O^{-1} \mathbf{G} \cdot \mathbf{f}}$.

