Total energy and Kohn-Sham Hamiltonian of a crystal within DFT
Let us consider a crystal with N — oo unit cells of volume €, periodically repeated, with lattice vectors R. (Pseudo—)Atoms of type p and ionic charge Z,, are
located at d,, in the unit cell. The system contains N ) u Z,, electrons. Its electron states are described by /N points k in the Brillouin Zone. Assuming for simplicity

a local electron-ion potential V#:
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where the electron charge density n(r) is given by
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(the sum is over the lowest > L Z,, occupied states for a semiconductor or insulator, up to the Fermi surface for a metal). Integrals extend on all space. The primed
sum appearing in the ion-ion term excludes terms with d, + R —d, — R’ = 0.
The Kohn-Sham equation is
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where the exchange-correlation potential V,.(r) = (§E,./dén(r)). For the LDA case only:
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From the Kohn-Sham equation we obtain, by summing over occupied states:
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and we can give an alternate formula for the total energy of a crystal:
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Plane-wave — Pseudopotential formalism
Let us consider the G-space representation of the wavefunctions:
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where V' = N is the volume of the crystal. With these definitions, the normalizations are:
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Let us define the Fourier trasform for a periodic function F(r) = Y g f(r — R) as:
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We assume non local pseudopotential of general form V# = Vu(r) + 32, Viui(r,r’). The total energy per unit cell in reciprocal space is:
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where S,(G) =3_, e~?Gdu is the structure factor, and
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Note that we have assumed one atom of each kind. The generalization is straightforward: the structure factor becomes S, (G) = le e~'Gdin where i, runs over
atoms of the same kind p.

Using eigenvalues sum, the total energy per unit cell is
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In the plane-wave representation the Kohn-Sham equation becomes
Y <k+G|H-e|k+G >U(k+G)=0, o > <k+G|H|k+G >U(k+G)=cU(k+G) (15)
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The matrix elements of the hamiltonian are
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Divergent Terms in the potential
The Hartree term, Viartree(0), and local potential term, 3-S5, (0)V,(0), are separately divergent and must be treated in a special way. Let us consider their sum

‘7(1') = Vioe(r) + VHartree(r). Its G = 0 term is not divergent:
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where we used
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The «,, are parameters depending only on the pseudopotential.



Divergent Terms in the energy

The G = 0 terms of the ion-ion, Hartree, and local pseudopotential terms in the total energy are separately divergent and must be treated in a special way. Let us
call Fg;, the sum of all divergent terms.

First Step: split Eg;, = EW 1+ P with
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Using the previous definition of ‘7(1‘), the first divergent term can be written as
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The G = 0 term of V(G) is not divergent and has been previously calculated:
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We finally get for the G = 0 contribution what is usually called “aZ term”:
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where 17500 is the local potential for G # 0, contains the aZ term in G = 0 component, and
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Second step: write Ec(ii)) = Eggmld + EEwald Exartree, with
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This identity is verified for any value of . The sum in Egl)ual 4 includes the term with d,, — d, — R = 0 (note the missing prime), that is subtracted back in the
second term of Egz;azd (note that erf(x) — 2z/+/m for small x).



The first Ewald term ESE Lal 4 is rapidly convergent in real space for any reasonable values of 7.

The sum in E( ) alq €an be written as the interaction energy between point charges n.(r) and the potential V,(r) produced by a gaussian distribution of charges:
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In reciprocal space, by using the Fourier transform
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one obtains (forgetting for the moment the divergence of V(G = 0)):
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The G = 0 contribution to Eg;ald — EHartree:
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is no longer divergent, because n(0) = n.(0) = 3_, Z,,/€} due to the neutrality of the system:
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The integral appearing in the last expression can be found in tables:
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Putting all pieces together, one obtains for E((ﬁi
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and for the total energy:
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One can use the sum of the eigenvalues to calculate the total energy: the kinetic, non local, and local (including the aZ term) contributions disappear and the
expression of the total energy becomes:
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Calculation of energy in CP
Let us define ny as the sum of gaussian charges centered at atomic sites:

The divergent terms FEy;, of the energy can be rewritten as Eg;, = Eég + E? with
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Ec(m); can be rewritten as
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where V,(r) is the potential generated by the gaussians. The singularity at G = 0 disappears :
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Note that this term is similar to, but not equal to, the aZ term. Eg?) can be rewritten as:
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E( ) can be rewritten as E( ) —

div div = LEwald + Eryg, where Epyqiq is the well-known Ewald sum,
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while Ex g is the electrostatic energy of a system of electrons and ions with a gaussian charge distribution:
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Both terms are regular at G = 0 because they are the electrostatic energy of neutral systems. Exy4 can be directly calculated:
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Egwaa can be easily computed using the same technique used before:
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where (note the sum over all vectors including d,, —d, — R =0):
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and (note the self-interaction term compensating the d,, —d, — R = 0 contribution of the former term):
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for an arbitrary value of (. E(E}t)ual 4 can be made to vanish, because both terms appearing in it can be written in reciprocal space as an Ewald sum. Leaving apart
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This expression comes from the Fourier transform of n,(r) and V,(r):
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By setting 2¢ = 7, one finds exactly the reciprocal space expression for the first term:
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Ef(’;qlal 4 1s a rapidly convergent sum in real space, plus a term coming from the self-interaction of gaussians.

Miscellaneous

When a set of special points {k;}, with weights w;, >, w; = 1, is used to sample the Brillouin Zone, one has:

i E f(k) = E wif(ki)' (50)
N
k i

The ¢(r) as defined above are vanishingly small in order to be normalized. What is actually calculated, and used in the Fast Fourier Transform algorithm, is
VNi(r): U(k+ G) & V/N(r). This ensures the correct normalization of the charge density.



