<html>
<head>
<style><!--
.hmmessage P
{
margin:0px;
padding:0px
}
body.hmmessage
{
font-size: 10pt;
font-family:΢ÈíÑźÚ
}
--></style>
</head>
<body class='hmmessage'><div dir='ltr'>
Dear Carlo and Davide:<BR>
         Gfortran is really for pwscf.Last year I use gfortran to Compile(ubuntu,Dell computer).Although I am successfully ,the result from example is not match to the reference.So the Intel Compile is good for pwscf with Red hat enterprise 5.0.<BR><BR>Yun Song,Kang<BR>Department Physical Science and Technology of  Inner Mongolia University.<BR> <BR>
<DIV>
<DIV id=ecxSkyDrivePlaceholder></DIV>> Date: Tue, 25 Oct 2011 10:00:29 +0200<BR>> From: dceresoli@gmail.com<BR>> To: pw_forum@pwscf.org<BR>> Subject: Re: [Pw_forum] GIPAW: error in output<BR>> <BR>> Dear Carlo,<BR>> if I must guess, 90% that it is a problem of the gfortran<BR>> compiler. I recognize that the situation of fortran compilers<BR>> and of the floating-point behavior of CPUs is very annoying.<BR>> <BR>> I'm using the Intel compiler with MKL and FFTW3 and I've run<BR>> most calculations of x86_64 CPUs. If I will have time, I'll<BR>> give a try to gfortran 4.6.<BR>> <BR>> Best,<BR>> Davide<BR>> <BR>> <BR>> On 01/-10/-28163 08:59 PM, Carlo Nervi wrote:<BR>> > Hello,<BR>> > I succesfully compiled QE 4.3.2 and the corresponding<BR>> > GIPAW module on a Opteron 6168 linux using gfortran 4.6,<BR>> > acml 5.0.0 and amdlibm 3.0.1.<BR>> ><BR>> > I did the benzene-scf.in job in the<BR>> > GIPAW/examples/benzene-USPP/ directory. The scf energy is<BR>> > the same as the reference output, which is in the same<BR>> > directory (apparently all is okay).<BR>> > I've compiled the gipaw module by the common way 'make<BR>> > gipaw' from the source QE dir. - I hope this was okay...<BR>> ><BR>> > The gipaw calculations proceed, apparently ends normally,<BR>> > but the output contains several NotaNumber (NaN). Anuone<BR>> > have an idea qhat's wrong or could please give some hints<BR>> > how to solve the problem?<BR>> > Thank you,<BR>> > Carlo<BR>> ><BR>> > ...<BR>> > negative rho (up, down): 0.103E-03 0.000E+00<BR>> > init_paw_1: ntyp= 1 rc= 1.4000 rs= 0.9333<BR>> > init_paw_1: ntyp= 1 rc= 1.4000 rs= 0.9333<BR>> > init_paw_1: ntyp= 1 rc= 1.4000 rs= 0.9333<BR>> > init_paw_1: ntyp= 1 rc= 1.4000 rs= 0.9333<BR>> ><BR>> > init_gipaw_1: projectors nearly linearly dependent:<BR>> > ntyp = 1, l/n1/n2 = 0 2 1 0.99622328<BR>> > init_gipaw_1: projectors nearly linearly dependent:<BR>> > ntyp = 1, l/n1/n2 = 1 2 1 0.99789339<BR>> > init_paw_1: ntyp= 2 rc= 0.8000 rs= 0.5333<BR>> > init_paw_1: ntyp= 2 rc= 0.8000 rs= 0.5333<BR>> > init_gipaw_1: projectors nearly linearly dependent:<BR>> > ntyp = 2, l/n1/n2 = 0 2 1 0.99987400<BR>> ><BR>> > GIPAW : 4.81s CPU 10.71s WALL<BR>> ><BR>> > Computing the magnetic susceptibility isolve=0<BR>> > ethr=0.1000E-13<BR>> > k-point # 1 of 1 pool # 1<BR>> > ik 1 ibnd 16 linter: root not converged 0.305E+07<BR>> > ik 1 ibnd 16 linter: root not converged 0.139E+31<BR>> > ik 1 ibnd 16 linter: root not converged 0.122E+27<BR>> > End of magnetic susceptibility calculation<BR>> ><BR>> > f-sum rule (1st term):<BR>> > ************** 0.0000 0.0000<BR>> > 0.0000 -29.8546 0.0000<BR>> > 0.0000 0.0000 -29.9120<BR>> ><BR>> > f-sum rule (2nd term):<BR>> > -0.3248 0.0000 0.0000<BR>> > 0.0000 -0.3248 0.0000<BR>> ><BR>> > ...<BR>> ><BR>> > Contributions to the NMR chemical shifts:<BR>> > -------------------------------<BR>> ><BR>> > Core contribution in ppm:<BR>> ><BR>> > Atom 1 C pos: ( 0.000000 0.107679 0.000000)<BR>> > sigma: 200.51<BR>> > Atom 2 C pos: ( 0.093253 0.053840 0.000000)<BR>> > sigma: 200.51<BR>> > Atom 3 C pos: ( 0.093253 -0.053840 0.000000)<BR>> > sigma: 200.51<BR>> > Atom 4 C pos: ( 0.000000 -0.107679 0.000000)<BR>> > sigma: 200.51<BR>> > Atom 5 C pos: ( -0.093253 -0.053840 0.000000)<BR>> > sigma: 200.51<BR>> > Atom 6 C pos: ( -0.093253 0.053840 0.000000)<BR>> > sigma: 200.51<BR>> > Atom 7 H pos: ( 0.000000 0.191523 0.000000)<BR>> > sigma: 0.00<BR>> > Atom 8 H pos: ( 0.165864 0.095761 0.000000)<BR>> > sigma: 0.00<BR>> > Atom 9 H pos: ( 0.165864 -0.095761 0.000000)<BR>> > sigma: 0.00<BR>> > Atom 10 H pos: ( 0.000000 -0.191523 0.000000)<BR>> > sigma: 0.00<BR>> > Atom 11 H pos: ( -0.165864 -0.095761 0.000000)<BR>> > sigma: 0.00<BR>> > Atom 12 H pos: ( -0.165864 0.095761 0.000000)<BR>> > sigma: 0.00<BR>> ><BR>> > Bare contribution in ppm:<BR>> ><BR>> > Atom 1 C pos: ( 0.000000 0.107679 0.000000)<BR>> > sigma: NaN<BR>> > NaN NaN NaN<BR>> > NaN NaN NaN<BR>> > NaN NaN NaN<BR>> ><BR>> > Atom 2 C pos: ( 0.093253 0.053840 0.000000)<BR>> > sigma: NaN<BR>> > NaN NaN NaN<BR>> > NaN NaN NaN<BR>> > NaN NaN NaN<BR>> ><BR>> > ...<BR>> > Total NMR chemical shifts in ppm:<BR>> > ---------------------------------------<BR>> ><BR>> > Atom 1 C pos: ( 0.000000 0.107679 0.000000)<BR>> > sigma: NaN<BR>> > C 1 anisotropy: NaN eta: 0.0000<BR>> > C 1 sigma_xx= NaN axis=( NaN<BR>> > NaN 0.000000)<BR>> > C 1 sigma_yy= NaN axis=( NaN<BR>> > NaN 0.000000)<BR>> > C 1 sigma_zz= NaN axis=( 0.000000<BR>> > 0.000000 1.000000)<BR>> ><BR>> > Atom 2 C pos: ( 0.093253 0.053840 0.000000)<BR>> > sigma: NaN<BR>> > C 2 anisotropy: NaN eta: 0.0000<BR>> > C 2 sigma_xx= NaN axis=( NaN<BR>> > NaN 0.000000)<BR>> > C 2 sigma_yy= NaN axis=( NaN<BR>> > NaN 0.000000)<BR>> > C 2 sigma_zz= NaN axis=( 0.000000<BR>> > 0.000000 1.000000)<BR>> ><BR>> ><BR>> ><BR>> <BR>> <BR>> _______________________________________________<BR>> Pw_forum mailing list<BR>> Pw_forum@pwscf.org<BR>> http://www.democritos.it/mailman/listinfo/pw_forum<BR></DIV>                                      </div></body>
</html>