1 Definitions

Phonon eigenvectors at $\mathbf{q}=0$ (or normal modes in finite systems) are denoted by $U_{s}^{\alpha}(\nu)$ for atom s and Cartesian component α. They are orthonormalized as follows:

$$
\begin{equation*}
\sum_{s t, \alpha \beta} U_{s}^{\alpha}(\mu) M_{s} \delta_{s t} \delta_{\alpha \beta} U_{t}^{\beta}(\nu)=\delta_{\mu \nu} \tag{1}
\end{equation*}
$$

where M_{s} is the mass of atom s.
One introduces the normal mode coordinate q_{ν} by defining the actual atomic displacements u_{s}^{α} as

$$
\begin{equation*}
u_{s}^{\alpha}=\sum_{\nu} q_{\nu} U_{s}^{\alpha}(\nu) \tag{2}
\end{equation*}
$$

Derivatives wrt q_{ν} are then given by

$$
\begin{equation*}
\frac{\partial A}{\partial q_{\nu}}=\sum_{s, \alpha} \frac{\partial A}{\partial R_{s}^{\alpha}} U_{s}^{\alpha}(\nu) \tag{3}
\end{equation*}
$$

where \mathbf{R}_{s} is the position of the s-th atom and the quantity A is a function of atomic positions: $A \equiv A\left(\mathbf{R}_{1}, . ., \mathbf{R}_{n}\right)$.

2 IR cross section

The IR cross section, $I_{\nu}^{I R}$, for normal mode ν in a gas is given by

$$
\begin{equation*}
I_{\nu}^{I R}=\frac{\mathcal{N} \pi}{3 c}\left|\frac{\partial \mathbf{d}}{\partial q_{\nu}}\right|^{2} \tag{4}
\end{equation*}
$$

where \mathcal{N} is the particle density, c is the speed of light, \mathbf{d} is the electric dipole of the system. In a condensed-matter system, $\mathcal{N}=1 / \Omega$, where Ω is the volume of the unit cell, and \mathbf{d} is the electric dipole per unit cell. The quantity $f^{I R}=\left|\partial \mathbf{d} / \partial q_{\nu}\right|^{2}$ is usually referred to as the "absolute IR activity". In terms of effective charges Z^{*} :

$$
\begin{equation*}
f^{I R}=e^{2} \sum_{\alpha}\left|\sum_{s \beta} Z_{s}^{* \alpha \beta} U_{s}^{\beta}\right|^{2} . \tag{5}
\end{equation*}
$$

3 Raman cross section

The nonresonant Raman cross section is written in terms of the Raman tensor $r_{\alpha \beta}(\nu)$:

$$
\begin{equation*}
r_{\alpha \beta}(\nu)=\frac{\partial \chi_{\alpha \beta}}{\partial q_{\nu}}=\sum_{s \gamma} \frac{\partial \chi_{\alpha \beta}}{\partial R_{s}^{\gamma}} U_{s}^{\gamma}(\nu), \tag{6}
\end{equation*}
$$

where $\chi_{\alpha \beta}$ is the electronic polarizability of the system: $\chi_{\alpha \beta}=\left(\epsilon_{\alpha \beta}^{\infty}-1\right) \Omega / 4 \pi$ in terms of the electronic dielectric tensor ϵ^{∞}. The derivative of χ is a third-order derivative of the energy E :

$$
\begin{equation*}
P_{\alpha \beta, s \gamma}^{\operatorname{Ram}}=\frac{\partial^{3} E}{\partial \mathrm{E}_{\alpha} \partial \mathrm{E}_{\beta} \partial R_{s}^{\gamma}}=\frac{\partial \chi_{\alpha \beta}}{\partial R_{s}^{\gamma}}, \tag{7}
\end{equation*}
$$

where E is the electric field. For a typical experimental setup: incident and outgoing signal along orthogonal directions, plane-polarized incident beam, what is measured (the Raman activity $I^{\text {Ram }}$) is given by

$$
\begin{equation*}
I^{\text {Ram }}=45 a^{2}+7 c^{2}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{1}{3}\left(r_{11}+r_{22}+r_{33}\right), c^{2}=\frac{1}{2}\left[\left(r_{11}-r_{22}\right)^{2}+\left(r_{11}-r_{33}\right)^{2}+\left(r_{22}-r_{33}\right)^{2}+6\left(r_{12}^{2}+r_{13}^{2}+r_{23}^{2}\right)\right] \tag{9}
\end{equation*}
$$

and it is understood that all quantities refer to mode ν. For degenerate modes one has to sum over different modes. The depolarization ratio ρ - the ratio between the intensity perpendicular and parallel to the incident polarization - varies from 0 to $3 / 4$, vanishes for totally symmetric modes, and is given by

$$
\begin{equation*}
\rho=\frac{3 c^{2}}{45 a^{2}+4 c^{2}} . \tag{10}
\end{equation*}
$$

4 Clausius-Mossotti formula

For molecular systems, χ should be replaced by the molecular polarizability $\tilde{\alpha}$. This can be estimated from a supercell calculation using a Clausius-Mossotti approach. For an isotropic system:

$$
\begin{equation*}
\tilde{\alpha}=\frac{3 \Omega}{4 \pi}\left(\frac{\epsilon-1}{\epsilon+2}\right)=\frac{3 \chi}{\epsilon+2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \tilde{\alpha}}{R_{s}^{\gamma}}=\frac{3 \Omega}{4 \pi} \frac{\partial \epsilon}{\partial R_{s}^{\gamma}} \frac{3}{(\epsilon+2)^{2}}=\frac{\partial \chi}{\partial R_{s}^{\gamma}}\left(\frac{3}{\epsilon+2}\right)^{2} \tag{12}
\end{equation*}
$$

For weakly anisotropic system, one may replace the factor $\epsilon+2$ with $\operatorname{Tr} \epsilon / 3+2$.

5 Units

Absolute IR activities are typically given in units of (Debye $/ \AA)^{2} \mathrm{amu}^{-1}$ (1 Debye $/ \AA=10^{-10}$ esu; $1 \mathrm{amu}=1.660538 \times 10^{-27} \mathrm{Kg}$). Other frequently encountered unit are $\mathrm{km} / \mathrm{mol}$ and $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$: $1(\text { Debye } / \AA)^{2} \mathrm{amu}^{-1}=42.255 \mathrm{~km} / \mathrm{mol}=171.65 \mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$ at 0 C and 1 atm . Third-order derivatives $P^{\text {Ram }}$ are typically given in units of \AA^{2}, Raman activities $I^{\text {Ram }}$ in units of $\AA^{4} \mathrm{amu}^{-1}$.

In the code, everything is in atomic Rydberg units (aRu) : $e^{2}=2, m=1 / 2, \hbar=1$. Conversion factors : $\mathrm{e}^{2}=2 \mathrm{aRu}=4.80324^{2} \times 10^{-20} \mathrm{esu}^{2}=4.80324^{2}(\text { Debye } / \AA)^{2}$
1 aRu mass unit $=2$ electron mass $=1.821876376 \times 10^{-30} \mathrm{Kg}=0.00109716 \mathrm{amu}$;
1 aRu length unit $=1$ bohr radius $=0.529177 \AA$. Note that Z^{*} is adimensional.
The conversion factors are:

- $1 \mathrm{aRu}=10514.0155(\text { Debye } / \AA)^{2} \mathrm{amu}^{-1}$ for $f^{I R}$;
- $1 \mathrm{aRu}=0.2800283 \AA^{2}$ for $P^{\text {Ram }}$;
- $1 \mathrm{aRu}=71.47166 \AA^{4} \mathrm{amu}^{-1}$ for $I^{\text {Ram }}$.

6 Bibliography

D. Porezag and M. R. Pederson, Phys. Rev. B 54, 7830 (1996).
P. Umari, X. Gonze, and A. Pasquarello, Phys. Rev. B 69, 235102 (2004).

