\documentclass[a4paper]{article} \topmargin=0cm \textwidth=15cm \textheight=21cm \def\d{{\bf d}} \def\E{\textsf{E}} \def\R{{\bf R}} \def\Z{{Z^*}} \begin{document} \section{Definitions} Phonon eigenvectors at ${\bf q}=0$ (or normal modes in finite systems) are denoted by $U_s^\alpha(\nu)$ for atom $s$ and Cartesian component $\alpha$. They are orthonormalized as follows: \begin{equation} \sum_{st,\alpha\beta} U_s^\alpha(\mu) M_s\delta_{st}\delta_{\alpha\beta} U_t^\beta(\nu) = \delta_{\mu\nu} \end{equation} where $M_s$ is the mass of atom $s$. One introduces the normal mode coordinate $q_\nu$ by defining the actual atomic displacements $u_s^\alpha$ as \begin{equation} u_s^\alpha = \sum_{\nu} q_\nu U_s^\alpha(\nu). \end{equation} Derivatives wrt $q_\nu$ are then given by \begin{equation} {\partial A\over\partial q_\nu} = \sum_{s,\alpha} {\partial A\over\partial R_s^\alpha} U_s^\alpha(\nu) \end{equation} where $\R_s$ is the position of the $s-$th atom and the quantity $A$ is a function of atomic positions: $A \equiv A(\R_1,..,\R_n)$. \section{IR cross section} The IR cross section, $I_\nu^{IR}$, for normal mode $\nu$ in a gas is given by \begin{equation} I_\nu^{IR} = {{\cal N}\pi\over 3 c} \left| {\partial \d \over \partial q_\nu}\right|^2 \end{equation} where ${\cal N}$ is the particle density, $c$ is the speed of light, $\d$ is the electric dipole of the system. In a condensed-matter system, ${\cal N}=1/\Omega$, where $\Omega$ is the volume of the unit cell, and $\d$ is the electric dipole per unit cell. The quantity $f^{IR} = |\partial \d / \partial q_\nu|^2 $ is usually referred to as the ``absolute IR activity''. In terms of effective charges $\Z$: \begin{equation} f^{IR} = e^2\sum_\alpha\left|\sum_{s\beta}\Z^{\alpha\beta}_s U_s^{\beta}\right|^2. \end{equation} \section{Raman cross section} The nonresonant Raman cross section is written in terms of the Raman tensor $r_{\alpha\beta}(\nu)$: \begin{equation} r_{\alpha\beta}(\nu) = {\partial \chi_{\alpha\beta}\over \partial q_\nu} = \sum_{s\gamma }{\partial \chi_{\alpha\beta}\over \partial R_s^\gamma} U_s^\gamma(\nu), \end{equation} where $\chi_{\alpha\beta}$ is the electronic polarizability of the system: $\chi_{\alpha\beta} = (\epsilon^\infty_{\alpha\beta}-1)\Omega/4\pi$ in terms of the electronic dielectric tensor $\epsilon^\infty$. The derivative of $\chi$ is a third-order derivative of the energy $E$: \begin{equation} P^{Ram}_{\alpha\beta,s\gamma} = {\partial^3 E \over \partial\E_\alpha \partial\E_\beta \partial R_s^\gamma} = {\partial \chi_{\alpha\beta}\over\partial R_s^\gamma}, \end{equation} where $\E$ is the electric field. For a typical experimental setup: incident and outgoing signal along orthogonal directions, plane-polarized incident beam, what is measured (the Raman activity $I^{Ram}$) is given by \begin{equation} I^{Ram} = 45 a^2 + 7 c^2, \end{equation} where \begin{equation} a = {1\over 3} (r_{11}+r_{22}+r_{33}), c^2={1\over 2} \left[ (r_{11}-r_{22})^2 +(r_{11}-r_{33})^2+(r_{22}-r_{33})^2 +6 (r_{12}^2 +r_{13}^2+r_{23}^2)\right] \end{equation} and it is understood that all quantities refer to mode $\nu$. For degenerate modes one has to sum over different modes. The depolarization ratio $\rho$ -- the ratio between the intensity perpendicular and parallel to the incident polarization -- varies from 0 to $3/4$, vanishes for totally symmetric modes, and is given by \begin{equation} \rho = {3c^2\over 45 a^2 + 4 c^2}. \end{equation} \section{Clausius-Mossotti formula} For molecular systems, $\chi$ should be replaced by the molecular polarizability $\tilde\alpha$. This can be estimated from a supercell calculation using a Clausius-Mossotti approach. For an isotropic system: \begin{equation} \tilde\alpha = {3\Omega\over 4\pi}\left({\epsilon-1\over\epsilon+2}\right) = {3\chi \over\epsilon+2} \end{equation} and \begin{equation} {\partial \tilde\alpha\over R_s^\gamma} = {3\Omega\over 4\pi}{\partial\epsilon\over\partial R_s^\gamma} {3\over\left(\epsilon+2\right)^2} = {\partial \chi\over\partial R_s^\gamma} \left({3\over\epsilon+2}\right)^2 \end{equation} For weakly anisotropic system, one may replace the factor $\epsilon+2$ with $\mbox{Tr}\epsilon/3+2$. \section{Units} Absolute IR activities are typically given in units of (Debye/\AA)$^2$amu$^{-1}$ (1 Debye/\AA =10$^{-10}$ esu; 1 amu =$1.660538\times 10^{-27}$ Kg). Other frequently encountered unit are km/mol and cm$^{-2}$ atm$^{-1}$: 1 (Debye/\AA)$^2$amu$^{-1}$ = 42.255 km/mol = 171.65 cm$^{-2}$ atm$^{-1}$ at 0 C and 1 atm. Third-order derivatives $P^{Ram}$ are typically given in units of \AA$^2$, Raman activities $I^{Ram}$ in units of \AA$^4$amu$^{-1}$. In the code, everything is in atomic Rydberg units (aRu): $e^2=2, m=1/2, \hbar=1$. Conversion factors : e$^2$ = 2 aRu = $4.80324^2 \times 10^{-20}$ esu$^2 = 4.80324^2$ (Debye/\AA)$^2$ \\ 1 aRu mass unit = 2 electron mass = 1.821876376$\times 10^{-30}$ Kg = 0.00109716 amu; \\ 1 aRu length unit = 1 bohr radius = 0.529177 \AA. Note that $\Z$ is adimensional. The conversion factors are: \begin{itemize} \item 1 aRu = 10514.0155 (Debye/\AA)$^2$amu$^{-1}$ for $f^{IR}$; \item 1 aRu = 0.2800283 \AA$^2$ for $P^{Ram}$; \item 1 aRu = 71.47166 \AA$^4$ amu$^{-1}$ for $I^{Ram}$. \end{itemize} \section{Bibliography} D. Porezag and M. R. Pederson, Phys. Rev. {\bf B} 54, 7830 (1996).\\ P. Umari, X. Gonze, and A. Pasquarello, Phys. Rev. {\bf B} 69, 235102 (2004). \end{document}