<div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><p class="MsoNormal" style="margin-top: 0in; margin-right: 0in; margin-bottom: 0pt; margin-left: 0in; text-align: justify; line-height: normal; ">
<span style="font-family: 'Times New Roman', serif; color: red; font-size: 12pt; "><font color="#000000">>I used Q.E to calculate the Youngs mudulud of Boron-Nitride nanotube and h-Bn the result are >in agrement with previous calculation. At this stage i want to calcualte the effect of temperature >on the Young mudulus of Boron-Nitride structres. Can Q.E do such calcualtions?</font></span></p>
<div class="MsoNormal" style="margin-top: 0in; margin-right: 0in; margin-bottom: 0pt; margin-left: 0in; text-align: justify; line-height: normal; "><span style="font-family: 'Times New Roman', serif; color: red; font-size: 12pt; "><font color="#000000">>Tahnks for your reply.</font></span></div>
<div class="MsoNormal" style="margin-top: 0in; margin-right: 0in; margin-bottom: 0pt; margin-left: 0in; text-align: justify; line-height: normal; "><span style="font-family: 'Times New Roman', serif; color: red; font-size: 12pt; "><font color="#000000">>mirnezhad, msc guilan .iran</font></span></div>
</span></div><div><br></div>Yes, you can calculate the temperature effects on the Young modulus. You must also take into account the thermal dilation. For that, you may calculate the phonon density of states and the free energy. Also, use finite temperature DFT, with smearing='fermi-dirac'. The Young modulos is the second derivative of the free energy with respect to the apropriate deformation, divided by the unstressed unit cell volume (mimimum free energy for a given temperature). Take a look at <span class="Apple-style-span" style="font-family: 'Trebuchet MS', Tahoma, Arial; font-size: 12px; color: rgb(51, 51, 51); line-height: 18px; ">Phys. Rev. B 76, 054117 (2007)</span><div>
<div> <br clear="all">
I Guess that the QHA automates the proccess of the Free energy calculations. </div><div><br></div><div>Using molecular dynamics you can also study the thermal effects, but not it is not equivalent to the free energy calculation. Molecular dynamics is classic for the motion of the atomic nuclei, hence you lose the quantum effects that you obtain from a phonon calculation. Hence, for low temperatures you should always do the phonon calculations and obtain the free energies, and derive them to get the Young modulus. For high temperatures, the anharmonic effects are more important than the quantum effects, so, do molecular dynamics and obtain the Young moduli from average stresses. I do not know what is "low" and "high" temperature, maybe comparing with the Debye temperature. </div>
<div><br></div><div>I am not sure if the average stress in a molecular dynamics is all the stress. I guess it is not. For example, the pressure reported by PWSCF is the pressure due to the interatomic forces, it depends only on the positions, but not on velocities. To obtain the total pressure at a given temperature one must add the term NkT/V (ideal gas). The pressure is the trace of the stress tensor, hence, the stress tensor must be corrected with the ideal gas term, at least in the diagonal elements. </div>
<div><br></div><div>Best regards</div><div>Eduardo</div><div><br></div><div><br>-- <br><div><br></div>
<div><br></div>Eduardo Menendez<br>Departamento de Fisica<br>Facultad de Ciencias<br>Universidad de Chile<br>Phone: (56)(2)9787439<br>URL: <a href="http://fisica.ciencias.uchile.cl/~emenendez" target="_blank">http://fisica.ciencias.uchile.cl/~emenendez</a><br>
</div></div>