<DIV>Dear all,</DIV>
<DIV>If the espresso has been compiled success on the below system, please tell me some hints on how to compile it. The pw.x that I compiled cannot perform output correctly. For example, when runing example01, though it indicates " Writing output data file silicon.save", only the charge file has been written, and ended abnormal by " MPI Application rank 0 killed before MPI_Finalize() with signal 11". </DIV>
<DIV> I also encounter problem in iotk. For example, when running test.x in iotk/ , it cannot run normally which ends with " Memory fault(coredump)". <BR> </DIV>
<DIV>====The system is =========<BR>hp unix <BR>ia64-hp-hpux11.23<BR>mlib for lapack and blas <BR>mpif90 for mpi <BR>=================</DIV>
<DIV>Your faithfully,<BR>g. m. he </DIV>
<DIV> </DIV>
<DIV> </DIV>
<DIV>--------run on Si of example01 ---------<BR> Program PWSCF v.4.1.3 starts ...<BR> Today is 26Sep2010 at 16:58: 0</DIV>
<DIV> Parallel version (MPI)</DIV>
<DIV> Number of processors in use: 1</DIV>
<DIV> For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW</DIV>
<DIV> Current dimensions of program pwscf are:<BR> Max number of different atomic species (ntypx) = 10<BR> Max number of k-points (npk) = 40000<BR> Max angular momentum in pseudopotentials (lmaxx) = 3<BR> Waiting for input...</DIV>
<DIV> Subspace diagonalization in iterative solution of the eigenvalue problem:<BR> Too few procs for parallel algorithm<BR> we need at least 4 procs per pool<BR> a serial algorithm will be used</DIV>
<DIV><BR> Planes per process (thick) : nr3 = 20 npp = 20 ncplane = 400</DIV>
<DIV> Proc/ planes cols G planes cols G columns G<BR> Pool (dense grid) (smooth grid) (wavefct grid)<BR> 1 20 253 2733 20 253 2733 85 531</DIV>
<DIV> </DIV>
<DIV> bravais-lattice index = 2<BR> lattice parameter (a_0) = 10.2000 a.u.<BR> unit-cell volume = 265.3020 (a.u.)^3<BR> number of atoms/cell = 2<BR> number of atomic types = 1<BR> number of electrons = 8.00<BR> number of Kohn-Sham states= 4<BR> kinetic-energy cutoff = 18.0000 Ry<BR> charge density cutoff = 72.0000 Ry<BR> convergence threshold = 1.0E-08<BR> mixing beta = 0.7000<BR> number of iterations used = 8 plain mixing<BR> Exchange-correlation = SLA PZ NOGX NOGC (1100)</DIV>
<DIV> celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000<BR> celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000</DIV>
<DIV> crystal axes: (cart. coord. in units of a_0)<BR> a(1) = ( -0.500000 0.000000 0.500000 )<BR> a(2) = ( 0.000000 0.500000 0.500000 )<BR> a(3) = ( -0.500000 0.500000 0.000000 )</DIV>
<DIV> reciprocal axes: (cart. coord. in units 2 pi/a_0)<BR> b(1) = ( -1.000000 -1.000000 1.000000 )<BR> b(2) = ( 1.000000 1.000000 1.000000 )<BR> b(3) = ( -1.000000 1.000000 -1.000000 )</DIV>
<DIV><BR> PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF<BR> Pseudo is Norm-conserving, Zval = 4.0<BR> Generated by new atomic code, or converted to UPF format<BR> Using radial grid of 431 points, 2 beta functions with:<BR> l(1) = 0<BR> l(2) = 1</DIV>
<DIV> atomic species valence mass pseudopotential<BR> Si 4.00 28.08600 Si( 1.00)</DIV>
<DIV> 48 Sym.Ops. (with inversion)</DIV>
<DIV><BR> Cartesian axes</DIV>
<DIV> site n. atom positions (a_0 units)<BR> 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 )<BR> 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 )</DIV>
<DIV> number of k points= 10<BR> cart. coord. in units 2pi/a_0<BR> k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000<BR> k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000<BR> k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000<BR> k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000<BR> k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000<BR> k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000<BR> k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000<BR> k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000<BR> k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000<BR> k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000</DIV>
<DIV> G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20)</DIV>
<DIV> Largest allocated arrays est. size (Mb) dimensions<BR> Kohn-Sham Wavefunctions 0.02 Mb ( 350, 4)<BR> NL pseudopotentials 0.04 Mb ( 350, 8)<BR> Each V/rho on FFT grid 0.12 Mb ( 8000)<BR> Each G-vector array 0.02 Mb ( 2733)<BR> G-vector shells 0.00 Mb ( 65)<BR> Largest temporary arrays est. size (Mb) dimensions<BR> Auxiliary wavefunctions 0.09 Mb ( 350, 16)<BR> Each subspace H/S matrix 0.00 Mb ( 16, 16)<BR> Each <psi_i|beta_j> matrix 0.00 Mb ( 8, 4)<BR> Arrays for rho mixing 0.98 Mb ( 8000, 8)</DIV>
<DIV> Initial potential from superposition of free atoms</DIV>
<DIV> starting charge 7.99901, renormalised to 8.00000<BR> Starting wfc are 8 atomic wfcs</DIV>
<DIV> total cpu time spent up to now is 0.15 secs</DIV>
<DIV> per-process dynamical memory: 2.5 Mb</DIV>
<DIV> Self-consistent Calculation</DIV>
<DIV> iteration # 1 ecut= 18.00 Ry beta=0.70<BR> Davidson diagonalization with overlap<BR> ethr = 1.00E-02, avg # of iterations = 2.0</DIV>
<DIV> Threshold (ethr) on eigenvalues was too large:<BR> Diagonalizing with lowered threshold</DIV>
<DIV> Davidson diagonalization with overlap<BR> ethr = 7.75E-04, avg # of iterations = 1.0</DIV>
<DIV> total cpu time spent up to now is 0.46 secs</DIV>
<DIV> total energy = -15.84097415 Ry<BR> Harris-Foulkes estimate = -15.86197052 Ry<BR> estimated scf accuracy < 0.06141563 Ry</DIV>
<DIV> iteration # 2 ecut= 18.00 Ry beta=0.70<BR> Davidson diagonalization with overlap<BR> ethr = 7.68E-04, avg # of iterations = 1.0</DIV>
<DIV> total cpu time spent up to now is 0.60 secs</DIV>
<DIV> total energy = -15.84406636 Ry<BR> Harris-Foulkes estimate = -15.84437081 Ry<BR> estimated scf accuracy < 0.00214295 Ry</DIV>
<DIV> iteration # 3 ecut= 18.00 Ry beta=0.70<BR> Davidson diagonalization with overlap<BR> ethr = 2.68E-05, avg # of iterations = 2.5</DIV>
<DIV> total cpu time spent up to now is 0.77 secs</DIV>
<DIV> total energy = -15.84451020 Ry<BR> Harris-Foulkes estimate = -15.84454237 Ry<BR> estimated scf accuracy < 0.00007086 Ry</DIV>
<DIV> iteration # 4 ecut= 18.00 Ry beta=0.70<BR> Davidson diagonalization with overlap<BR> ethr = 8.86E-07, avg # of iterations = 2.1<BR> total cpu time spent up to now is 0.96 secs</DIV>
<DIV> total energy = -15.84452620 Ry<BR> Harris-Foulkes estimate = -15.84452929 Ry<BR> estimated scf accuracy < 0.00000682 Ry</DIV>
<DIV> iteration # 5 ecut= 18.00 Ry beta=0.70<BR> Davidson diagonalization with overlap<BR> ethr = 8.52E-08, avg # of iterations = 2.0</DIV>
<DIV> total cpu time spent up to now is 1.14 secs</DIV>
<DIV> total energy = -15.84452724 Ry<BR> Harris-Foulkes estimate = -15.84452726 Ry<BR> estimated scf accuracy < 0.00000006 Ry</DIV>
<DIV> iteration # 6 ecut= 18.00 Ry beta=0.70<BR> Davidson diagonalization with overlap<BR> ethr = 7.18E-10, avg # of iterations = 2.7</DIV>
<DIV> total cpu time spent up to now is 1.34 secs</DIV>
<DIV> End of self-consistent calculation</DIV>
<DIV> k = 0.1250 0.1250 0.1250 ( 335 PWs) bands (ev):</DIV>
<DIV> -5.6039 4.6467 5.9568 5.9568</DIV>
<DIV> k = 0.1250 0.1250 0.3750 ( 338 PWs) bands (ev):</DIV>
<DIV> -5.0584 3.0175 4.9012 4.9909</DIV>
<DIV> k = 0.1250 0.1250 0.6250 ( 337 PWs) bands (ev):</DIV>
<DIV> -3.9883 1.3106 3.5165 3.9919</DIV>
<DIV> k = 0.1250 0.1250 0.8750 ( 343 PWs) bands (ev):</DIV>
<DIV> -2.4615 -0.5936 2.7226 3.5069</DIV>
<DIV> k = 0.1250 0.3750 0.3750 ( 341 PWs) bands (ev):</DIV>
<DIV> -4.5395 1.5909 3.8905 5.4636</DIV>
<DIV> k = 0.1250 0.3750 0.6250 ( 340 PWs) bands (ev):</DIV>
<DIV> -3.5491 0.3750 2.8565 4.2745</DIV>
<DIV> k = 0.1250 0.3750 0.8750 ( 347 PWs) bands (ev):</DIV>
<DIV> -2.2719 -0.7033 2.0783 3.2106</DIV>
<DIV> k = 0.1250 0.6250 0.6250 ( 344 PWs) bands (ev):</DIV>
<DIV> -2.8220 -0.4390 2.1614 4.3230</DIV>
<DIV> k = 0.3750 0.3750 0.3750 ( 350 PWs) bands (ev):</DIV>
<DIV> -4.0849 0.2304 5.1432 5.1432</DIV>
<DIV> k = 0.3750 0.3750 0.6250 ( 343 PWs) bands (ev):</DIV>
<DIV> -3.3347 -0.5842 3.9340 4.6556</DIV>
<DIV>! total energy = -15.84452726 Ry<BR> Harris-Foulkes estimate = -15.84452726 Ry<BR> estimated scf accuracy < 8.8E-10 Ry</DIV>
<DIV> The total energy is the sum of the following terms:</DIV>
<DIV> one-electron contribution = 4.79352695 Ry<BR> hartree contribution = 1.07664132 Ry<BR> xc contribution = -4.81493686 Ry<BR> ewald contribution = -16.89975867 Ry</DIV>
<DIV> convergence has been achieved in 6 iterations</DIV>
<DIV> Forces acting on atoms (Ry/au):</DIV>
<DIV> atom 1 type 1 force = 0.00000000 0.00000000 0.00000000<BR> atom 2 type 1 force = 0.00000000 0.00000000 0.00000000</DIV>
<DIV> Total force = 0.000000 Total SCF correction = 0.000000</DIV>
<DIV><BR> entering subroutine stress ...</DIV>
<DIV> total stress (Ry/bohr**3) (kbar) P= -10.23<BR> -0.00006958 0.00000000 -0.00000000 -10.23 0.00 -0.00<BR> -0.00000000 -0.00006958 -0.00000000 -0.00 -10.23 -0.00<BR> -0.00000000 -0.00000000 -0.00006958 -0.00 -0.00 -10.23</DIV>
<DIV><BR> Writing output data file silicon.save<BR>MPI Application rank 0 killed before MPI_Finalize() with signal 11</DIV>
<DIV>-----------------end of run on Si in example01--------------------------<BR></DIV><br><br><span title="neteasefooter"><span id="netease_mail_footer"><hr/>
<a href="http://yxp.163.com/photo/ep.html?sss=fromyx0911" target="_blank">全国最低价,天天在家冲照片,24小时发货上门!</a>
</span></span>