<span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; ">Dear Mohsen</span></div>
<div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><br></span></div><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; ">Let me comment on your procedure</span></div>
<div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><br></span></div>>At first i relaxed nano-tube and obtain the position of carbon atoms in the >ground state. Then i decrease the tube length. A in the relation is the area of >nano-tube (A=pi*R*R which R is the radius of tube). F is the atomic force in >the Z axis which can be calculated by using Q.E.<br>
>I think it is better to calculate total energy in some configuration and use >(F=dE/dz, where E is the total energy in different configuration).<br>>Is there any problem in this procedure?</span><div><font class="Apple-style-span" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;"><br>
</span></font></div><div><font class="Apple-style-span" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;">First, are you calculating the Young modulus of an isolated nanotube, or of a material composed of (3,3) nanotubes perfectly oriented and with a well defined density ?</span></font></div>
<div><font class="Apple-style-span" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;"><br></span></font></div><div><font class="Apple-style-span" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;">The Young modulus is a concept that is well suited for a homogeneous material, e.g., a bulk of nanotubes. It will depend on the density and orientations of the nanotubes, but will be indendent of the transverse area (the force and the energy of deformation is prportional to the area). In a bulk of nanotubes perfectly oriented, the relevant area A would be the transverse area of the unit cell, and the size and shape of the  unit cell depends on the density of nanotubes, or must be optimized by a mimimum energy criterium. If you are studying the Young modulus of a single isolated nanotube, then note that the Young modulus is well defined only if everybody use the same definition of A. Hence, be sure of considering the same definition as the other results that you compare. Second, be sure to use a unit cell sufficiently wide,  so that the preriodic replicas of the nanotube are far enough and  the results do not depend on the transversal dimensions of the unit cell. </span></font></div>
<div><font class="Apple-style-span" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;"><br></span></font></div><div><font class="Apple-style-span" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;"><br>
</span></font></div><div><font class="Apple-style-span" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;"><span class="Apple-style-span" style="font-size: 13px; ">>If we relaxed the tube after <span style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; ">compression there is no net force on carbon >atoms so I did not relax the system after compression.<br>
</span><span style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><b>>Have you used a finite nanotube and computed the forces upon the >atoms of the edge?</b>.....> A finite nano-tube? I consider a unit cell (which can >make an infinite tube ) and calculate force between atoms.<br>
>Is there any problem?</span></span></span></font><br></div><div>Yes. The state with the atoms not relaxed is not a state of equilibrium, and according to Boltzmann law, if its energy difference with the relaxed state is larger than kT (0.026 eV at 300 K), this state may happen only once in the lifetime of the universe. Then, the property you calculate may have nothing to do with a real situation. Hence, relax the atoms. </div>
<div><br></div><div>If you relax, of course  there will be no net force upon the atoms, but the tube have stress. Use tstress=.true. and use the appropriate  component of the stress tensor as F/A. Remember to do it for various transverse sizes of the simulation cell and be sure that the stress is independent of the cell size, or extrapolate. Of course, also must be independent of the cutoffs and smearing parameters (degauss). Alternatively, you may use the second derivative of the total energy to obtain the Young modulus. It is healthy to use both methods to check that the results are fine. The numbers will not be exactly equal due to numerical reasons, and you can systematically improve the agreement increasing the cutoffs and the number of kpoints. </div>
<div><br></div><div><br></div><div>When I asked about a finite nanotube, I was thinking in an alternative way to do it. Use a large cubic cell, with a finite nanotube inside, made a constrained relaxation fixing the z coordinate (I assume that z is the nanotube axis) of the edge atoms, relax the other atoms, and sum the forces acting upon the atoms at one edge (that must be the negative of the total force upon the other edge). With that you can obtain the Young modulus of a finite nanotube. If you want it for the infinite nanotube you must do it with several lengths and extrapolate to infinite length. Of course this is much more  expensive (really brute force) if your goal is the infinite nanotube, but is is what you should do if your interest is in short nanotubes.  </div>
<div><br></div><div>Best regards</div><div>Eduardo</div><div><br>-- <br><div><br></div><div><br></div>Eduardo Menendez<br>Departamento de Fisica<br>Facultad de Ciencias<br>Universidad de Chile<br>Phone: (56)(2)9787439<br>
URL: <a href="http://fisica.ciencias.uchile.cl/~emenendez" target="_blank">http://fisica.ciencias.uchile.cl/~emenendez</a><div><br></div><div>Let's pray for the 33 trapped miners! Four months to rescue.</div><br>
</div>