<table cellspacing="0" cellpadding="0" border="0" ><tr><td valign="top" style="font: inherit;">Dear Jeff,<br>I am definitely not an expert on the topic but I'd like to understand your question better. <br><pre> Mode symmetry, D_6h(6/mmm) point group:<br><br> omega( 1 - 1) = -37.4 [cm-1] --> A_2u I<br> omega( 2 - 3) = -33.9 [cm-1] --> E_1u I<br> omega( 4 - 4) = 863.3 [cm-1] --> B_2g<br> omega( 5 - 6) = 1336.0 [cm-1] --> E_2g</pre>So you have the irr. representations and the values for omega (values are printed with higher precision in the previous part after diagonalization as you reported). What exactly do you want to know more (that you cannot check from a book on group theory) ?<br><br>Emine Kucukbenli, grad. student, SISSA, Italy.<br><br>--- On <b>Tue, 3/10/09, Jeffrey Mullen <i><jtmullen@ncsu.edu></i></b> wrote:<br><blockquote
style="border-left: 2px solid rgb(16, 16, 255); margin-left: 5px; padding-left: 5px;">From: Jeffrey Mullen <jtmullen@ncsu.edu><br>Subject: [Pw_forum] Phonon branch enumeration<br>To: pw_forum@pwscf.org<br>Date: Tuesday, March 10, 2009, 2:34 AM<br><br><pre>Greetings<br><br>I am testing electron-phonon interaction calculations with graphene and<br>have encountered a problem enumerating the resulting phonon branches.<br>When I run the ph.x calculation at the q(0 0 0), the code calculates 4<br>representations:<br><br> Representation # 1 modes # 1 2<br> Representation # 2 mode # 3<br> Representation # 3 mode # 4<br> Representation # 4 modes # 5 6<br><br><br>When the values for omega are calculated, the results are:<br><br> **************************************************************************<br> omega( 1) = -1.119851 [THz] = -37.354451 [cm-1]<br> omega( 2) = -1.016557 [THz] = -33.908905
[cm-1]<br> omega( 3) = -1.016557 [THz] = -33.908905 [cm-1]<br> omega( 4) = 25.882237 [THz] = 863.344237 [cm-1]<br> omega( 5) = 40.051667 [THz] = 1335.988701 [cm-1]<br> omega( 6) = 40.051667 [THz] = 1335.988701 [cm-1]<br> **************************************************************************<br><br><br>with the following mode symmetries:<br><br> Mode symmetry, D_6h(6/mmm) point group:<br><br> omega( 1 - 1) = -37.4 [cm-1] --> A_2u I<br> omega( 2 - 3) = -33.9 [cm-1] --> E_1u I<br> omega( 4 - 4) = 863.3 [cm-1] --> B_2g<br> omega( 5 - 6) = 1336.0 [cm-1] --> E_2g R<br><br><br>My question is one of ordering. How do I extract which omega(##)<br>corresponds to which representation/mode?<br><br>Thanks<br>Jeff Mullen<br>North Carolina State
University<br><br>_______________________________________________<br>Pw_forum mailing list<br>Pw_forum@pwscf.org<br>http://www.democritos.it/mailman/listinfo/pw_forum<br></pre></blockquote></td></tr></table><br>