<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML xmlns:o = "urn:schemas-microsoft-com:office:office" xmlns:st1 = 
"urn:schemas-microsoft-com:office:smarttags"><HEAD>
<META http-equiv=Content-Type content="text/html; charset=GB2312">
<META content="MSHTML 6.00.2900.3354" name=GENERATOR>
<STYLE>@font-face {
        font-family: ËÎÌå;
}
@font-face {
        font-family: Verdana;
}
@font-face {
        font-family: @ËÎÌå;
}
@page Section1 {size: 595.3pt 841.9pt; margin: 72.0pt 90.0pt 72.0pt 90.0pt; layout-grid: 15.6pt; }
P.MsoNormal {
        TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify
}
LI.MsoNormal {
        TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify
}
DIV.MsoNormal {
        TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify
}
A:link {
        COLOR: blue; TEXT-DECORATION: underline
}
SPAN.MsoHyperlink {
        COLOR: blue; TEXT-DECORATION: underline
}
A:visited {
        COLOR: purple; TEXT-DECORATION: underline
}
SPAN.MsoHyperlinkFollowed {
        COLOR: purple; TEXT-DECORATION: underline
}
SPAN.EmailStyle17 {
        FONT-WEIGHT: normal; COLOR: windowtext; FONT-STYLE: normal; FONT-FAMILY: Verdana; TEXT-DECORATION: none; mso-style-type: personal-compose
}
DIV.Section1 {
        page: Section1
}
UNKNOWN {
        FONT-SIZE: 10pt
}
BLOCKQUOTE {
        MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px; MARGIN-LEFT: 2em
}
OL {
        MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
UL {
        MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
</STYLE>
</HEAD>
<BODY 
style="BORDER-TOP-WIDTH: 0px; BORDER-LEFT-WIDTH: 0px; FONT-SIZE: 10pt; BORDER-BOTTOM-WIDTH: 0px; FONT-FAMILY: verdana; BORDER-RIGHT-WIDTH: 0px">
<DIV><FONT face=Verdana size=2><FONT color=#000080>Dear Stefano, Eyvaz and 
Lazaro,</FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080></FONT></FONT> </DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>    I 
deeply appreciate your kindly help. I must be cautious in 
understanding </FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>the fundamental 
concepts of quantum mechanics indeed. I need spend</FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>more time to master them as 
Stefano suggested. Although they are rather abstract</FONT></FONT></DIV>
<DIV><FONT color=#000080>for me, I hope I can apprehend their physical 
essence. </FONT><FONT face=Verdana size=2></DIV>
<DIV>
<DIV> </DIV>
<DIV>wrote by Stefano B:</DIV>
<DIV>>1) The eigenstates of the Hamiltonian of a system of non-interacting  </DIV>
<DIV>>electrons can ALWAYS be chosen as antisymmetrized products ("Slater  </DIV>
<DIV>>deteminants") of one-particle wavefunctions ("molecular orbitals" in  </DIV>
<DIV>>quantum chemistry, "Bloch states" in solid-state physics) which are  </DIV>
<DIV>>eigenfunctions of a one-electron Hamiltonian. Pay attention to the  </DIV>
<DIV>>conceptually simple, trivial, but often overlooked, difference between  </DIV>
<DIV>>the many-body Hamiltonian (with its-own eigenfunctions and  </DIV>
<DIV>>eigenstates) and the one-particle Hamiltonian. The many-body energy is  </DIV>
<DIV>>simply the sum of the one-electron energies of all the molecular  </DIV>
<DIV>>orbitals whose product is the many-body eigenstate.</DIV>
<DIV>
<DIV><FONT color=#000080>> </FONT></DIV></DIV>
<DIV>>2) The antisymmetric nature of the many-body wavefunctions is such  </DIV>
<DIV>>that, if you construct  a product of a set of functions where two of  </DIV>
<DIV>>them are equal, the result will vanish. This is the PAULI PRINCIPLE.  </DIV>
<DIV>>No two electrons can occupy the same one-electron state.</DIV>
<DIV>></DIV>
<DIV>>3) Because of (2), the lowest possible many-body energy (ground state)  </DIV>
<DIV>>is the sum of the lowest N one-particle energy eigenvalues (N being  </DIV>
<DIV>>the number of electrons). The highest occupied one-electron energy  </DIV>
<DIV>>level is the difference between the ground state energy of the system  </DIV>
<DIV>>with N electrons and that with N-1 electrons (ionization potential).  </DIV>
<DIV>>The lowest unoccupied energy is the difference between the ground  </DIV>
<DIV>>states with N+1 and N electrons (electron affinity).</DIV>
<DIV>The occupation of electrons depends on the sequence of their energies. 
</DIV>
<DIV> </DIV>
<DIV>>4) For any finite system (as well as for insulating infinite ones) the  </DIV>
<DIV>>electron affinity is different from the ionization potential. For  </DIV>
<DIV>>(infinite) metals, they coincide and the define the Fermi energy: by  </DIV>
<DIV>>definition, the energy necessary to add or to remove an electron from  </DIV>
<DIV>>the system (in classical thermodynamics this same quantity is called  </DIV>
<DIV>>the chemical potential). For insulators, it is not that the Fermi  </DIV>
<DIV>>energy "does not exist". Only, it is ill-defined it the zero- </DIV>
<DIV>>temperature limit (it can be assumed to take any value between the  </DIV>
<DIV>>electron affinity and the ionization potential). At any finite  </DIV>
<DIV>>temperature, thermodynamic considerations remove this indeterminacy.</DIV>
<DIV>I need more time to understand these comments. </DIV>
<DIV> </DIV>
<DIV>>> The electron states(eigenvalue of the density matrix)</DIV>
<DIV> </DIV>
<DIV>>what a mess, here! electron states, if ever, may be eigenSTATES of a  </DIV>
<DIV>>quantum operator, not eigenVALUES. it is true that for independent  </DIV>
<DIV>>electrons the "electron states" (i.e. the eigensSTATES of the one- </DIV>
<DIV>>particle Hamiltonian) are also eigenstates of the one-particle density  </DIV>
<DIV>>matrix, but the viceversa is not true. Being an eigenstate of the  </DIV>
<DIV>>density matrix is not a sufficient condition for being a legitamate  </DIV>
<DIV>>"electron state" (in the sense of being an eigenstate of the  </DIV>
<DIV>>Hamiltonian). this is so because the density matrix is a projector,  </DIV>
<DIV>>whose eigenvalues (0 and 1) are highly degenerate ...</DIV>
<DIV>I'm sorry for my terrible opinion. eigenSTATE should be the </DIV>
<DIV>eigenvector of matrix (quantum operator) and eigenVALUE should</DIV>
<DIV>be the mean value of quantum operator. I have read some quantum</DIV>
<DIV>mechanics textbooks as Eyvaz suggested (C.KITTEL), unfortunately </DIV>
<DIV>I fail to make a connection between the book 
and application.  </DIV>
<DIV> </DIV>
<DIV>>> My brain doesn't work.</DIV>
<DIV> </DIV>
<DIV>>take it easy. you are probably one of the many victims of the modern  </DIV>
<DIV>>tendency to study advanced (at times, very advanced) topics without  </DIV>
<DIV>>having properly understood the fundamentals. as trivial as these  </DIV>
<DIV>>fundamentals may be, it takes time to master them. I am sure it is not  </DIV>
<DIV>>your fault.</DIV>
<DIV><FONT color=#000080>In fact the chemical <FONT face=Verdana 
size=2>process is my interesting</FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080> and </FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080>the physical analysis </FONT></FONT>
<DIV><FONT face=Verdana size=2><FONT color=#000080>are the most powerful 
and essential idea to </FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>get a deep insight into the </FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>mechanism of reactions. 
</FONT></FONT><FONT face=Verdana size=2><FONT color=#000080>Honest to 
myself, </FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>the output information(</FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>local relaxtion, electron 
state around fermi level and redox energy) are 
<DIV><FONT face=Verdana size=2><FONT color=#000080>important to 
me. However the results</FONT></FONT></FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080> </FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>largely depends on the </FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080>input</FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080> which </FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>can only be setted exactly 
by a systematic understanding </FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>of the quantum </FONT></FONT><FONT color=#000080>mechanic 
</FONT></DIV>
<DIV><FONT color=#000080>theory.</FONT><FONT 
color=#000080> (To what </FONT><FONT color=#000080>extent of 
the knowledge should I achieve in quantum mechanics </FONT></DIV>
<DIV><FONT color=#000080>field is another </FONT><FONT color=#000080>problem 
which has </FONT><FONT color=#000080>confused me for a long time...) 
</FONT><FONT color=#000080>Thanks again </FONT></DIV>
<DIV><FONT color=#000080>to Stefano for </FONT><FONT color=#000080>giving 
me </FONT><FONT color=#000080>confidence. </FONT><FONT color=#000080>I will 
try </FONT><FONT color=#000080>my best.</FONT></DIV></DIV>
<DIV><FONT color=#000080></FONT> </DIV>
<DIV><FONT color=#000080>  wrote by Lazaro:</FONT></DIV>
<DIV>>... ... ...</DIV>
<DIV>>I think it would be better to keep the definition of Fermi 
energy<BR>>separated from the definition of chemical potential. If we stick 
to the<BR>>definition of the Fermi energy as the energy of the highest 
occupied<BR>>electron state at T=0K then there is a Fermi energy in 
semiconductors,<BR>>that is the top of the valence band, and a chemical 
potential somewhere<BR>>in the gap depending on the temperature. If the Fermi 
energy is defined<BR>>as a value of the energy that divides occupied and 
empty states (as in<BR>>Ashcroft & Mermin I think) then any value in the 
gap could be taken as a<BR>>Fermi energy.</DIV>
<DIV>I found that it is the clearest explanation of fermi energy. I deeply agree 
with you.</DIV>
<DIV>At last I deeply appreciate all your kindly helps once more.<IMG 
src="cid:__0@Foxmail.net"></DIV>
<DIV> </DIV>
<DIV><FONT color=#000080>Best regards,</FONT></DIV>
<DIV><FONT color=#000080>XQ Wang</FONT></DIV>
<DIV><FONT color=#000080>
<DIV>
<DIV><FONT face=Verdana size=2>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=FR 
style="mso-ansi-language: FR"><FONT size=3><FONT 
face="Times New Roman">=====================================<o:p></o:p></FONT></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt; mso-outline-level: 1"><SPAN 
lang=FR style="mso-ansi-language: FR"><FONT size=3><FONT 
face="Times New Roman">X.Q. Wang <o:p></o:p></FONT></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=FR 
style="mso-ansi-language: FR"><A href="mailto:wangxinquan@tju.edu.cn"><FONT 
face="Times New Roman" 
size=3>wangxinquan@tju.edu.cn</FONT></A><o:p></o:p></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><FONT size=3><FONT 
face="Times New Roman"><st1:place w:st="on"><st1:PlaceType w:st="on"><SPAN 
lang=EN-US>School</SPAN></st1:PlaceType><SPAN lang=EN-US> of <st1:PlaceName 
w:st="on">Chemical Engineering</st1:PlaceName></SPAN></st1:place><SPAN 
lang=EN-US> and Technology</SPAN></FONT></FONT></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt; mso-outline-level: 1"><st1:place 
w:st="on"><FONT size=3><FONT face="Times New Roman"><st1:PlaceName 
w:st="on"><SPAN lang=EN-US>Tianjin</SPAN></st1:PlaceName><SPAN lang=EN-US> 
<st1:PlaceType 
w:st="on">University</st1:PlaceType></SPAN></FONT></FONT></st1:place></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=EN-US><FONT 
face="Times New Roman" size=3>92 Weijin Road, Tianjin, P. R. 
China</FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=EN-US><FONT 
face="Times New Roman" size=3>tel:86-22-27890268, fax: 
86-22-27892301</FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=EN-US><FONT 
face="Times New Roman" 
size=3>=====================================</FONT></SPAN></P></FONT></DIV></DIV>   </FONT><FONT 
color=#000080> </FONT></DIV></DIV></FONT></DIV></BODY></HTML>