<div>Thank you, Guido. </div>
<div>Regards,</div>
<div>H.P<br> </div>
<div><span class="gmail_quote">On 4/19/07, <b class="gmail_sendername">roma</b> <<a href="mailto:roma@srmp.saclay.cea.fr">roma@srmp.saclay.cea.fr</a>> wrote:</span>
<blockquote class="gmail_quote" style="PADDING-LEFT: 1ex; MARGIN: 0px 0px 0px 0.8ex; BORDER-LEFT: #ccc 1px solid">Dear Ian Haiping,<br><br>it is true that seldom papers about defects discuss this point, and I am<br>probably guilty of this too. My understanding is that your expression
<br>for the valence band top of the defect is correct, but then it depends<br>on how you use it. What has been omitted according to the person that<br>told you this?<br>The crucial quantity is [<V(D,q)> -<V(0)>] (let us call it
<br>DeltaV(D,q) ). Long ago I did a small program to calculate the so called<br>macroscopic average of the potential (Balderesci, Baroni,Resta, PRL v61,<br>p734, 1988) in the supercell: it was ok for a defect in a simple metal
<br>(I could find the "bulklike" region) but for the system I was interested<br>in, SiO2, the oscillations of the macroscopic average along the<br>supercell made it useless. Supercell too small? Problems due to the
<br>symmetry of my supercell? I adopted a different strategy, I determined<br>the energy shift that maximises the overlap (or minimises the square<br>differences) of the density of states of the defected and perfect<br>crystal. This shift is for me DeltaV(D,q).
<br>This, according to my experience, can be unambiguosly determined as long<br>as the relaxations are good (and k-point sampling is sufficient).<br>Then another question is to which extent the DeltaV term corrects for<br>
the image interaction of charged defects, on which I would appreciate<br>also the feedback from others on the list.<br>Best regards,<br><br>Guido<br><br><br><br><br><br>On thursday April 12 Ian Haiping wrote:<br><br>>    I want to determin  the transition enery of a defect level.  It is
<br>>important to align the valence bands maximum of different systems under<br>>investigation. Many works  has claimed valence bands maximum alignments<br>>were performed but no technique details are given.<br><br>
<br>>For my understanding,<br><br><br>>I thougt the valence bands maxium of charge defect systems could be<br>>determined by aligning its average potential<br><br><br>>to pure perfect system's potential, e.g
  \epsilon_{VBM}.(Defects,q) =<br>>\epsilon_{VBM}(0) + [<V(D,q)> -<V(0)>].   But some person told me  such<br>>expression has omitted something.    So it really confused me much. As<br>>far as i know,  the potential of system could be only determined  to
<br>>some constant . i thought the alignment of average potentials of two<br>>systems could take into account this arbitrariness.. I am not very<br>>certain about this  VBM alignment right now   Would you give me some
<br>>comments and clarify my understanding ?<br><br><br>><br>--<br>Guido Roma <roma${at}cea.fr> -- CEA-Saclay - DEN/DMN/SRMP Bat.520/13<br>Phone: [+33]-1-69081857 -- Fax: ...6867 -- Mobile: [+33]-6-20069085<br>
<br>_______________________________________________<br>Pw_forum mailing list<br><a href="mailto:Pw_forum@pwscf.org">Pw_forum@pwscf.org</a><br><a href="http://www.democritos.it/mailman/listinfo/pw_forum">http://www.democritos.it/mailman/listinfo/pw_forum
</a><br></blockquote></div><br><br clear="all"><br>-- <br>Hai-Ping Lan <br>Department of Electronics ,<br>Peking University , Bejing, 100871