<div dir="ltr">Hi<div><br></div><div>if I understand correctly your question: yes, ALL degenerate eigenstates are random (but orthonormal) linear combinations inside the degenerate subspace. And no, typically they do not resemble the eigenstates one would find in textbooks.</div><div><br></div><div>Paolo</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Dec 9, 2021 at 10:59 AM 曾梓萌 <<a href="mailto:zengzm20@mails.tsinghua.edu.cn">zengzm20@mails.tsinghua.edu.cn</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div><pre style="font-family:courier,"courier new",monospace;white-space:pre-wrap;margin-top:0px;margin-bottom:0px">dear develpoers</pre></div>For Kramer's degenerate system, there are two energy degenerate eigenstates on each k and E, and any linear combination of these two degenerate states is still the eigenstate of the system. Is the eigenstate calculated by QE this random linear combination eigenstate?<div><br></div><div><pre style="margin-top:0px;margin-bottom:0px"><font face="courier, courier new, monospace"><span style="white-space:pre-wrap">I will appreciate any helps in this subject.
Truly yours,
Zeng Zimeng
Tsinghua university</span></font></pre></div>_______________________________________________<br>
developers mailing list<br>
<a href="mailto:developers@lists.quantum-espresso.org" target="_blank">developers@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/developers" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/developers</a><br>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div>Paolo Giannozzi, Dip. Scienze Matematiche Informatiche e Fisiche,<br>Univ. Udine, via delle Scienze 206, 33100 Udine, Italy<br>Phone +39-0432-558216, fax +39-0432-558222<br><br></div></div></div></div></div>