<div dir="ltr"><div>Dear Paolo,</div><div><br></div><div>I'm sorry I wasn't precise in that sentence. What I should have said is that I've read a message in the mailing list about a possible issue with magnetic symmetries:</div><div><br></div><div><a href="https://lists.quantum-espresso.org/pipermail/developers/2020-May/002220.html">https://lists.quantum-espresso.org/pipermail/developers/2020-May/002220.html</a><br></div><div><br></div><div>After I wrote the previous email, I realized that I could have written the question to the mailing list in simple terms. So let me try again here:</div><div><br></div><div>SIMPLIFYING THE QUESTION</div><div>-----------------------------------------</div><div>Graphene lattice has the symmetry D6h + time-reversal (T) [and ignoring translations for simplicity]. On the K point we lose inversion (I) and time-reversal, since these take K to K', and the point group becomes D3h at K. But the combined symmetry T.I is preserved, as TRS goes from K to K' and inversion takes it back to K. </div><div><br></div><div>I use the method of invariants to develop effective k.p models and for graphene this T.I symmetry is important, as it tells us that a k-dependent SOC term is zero near the Dirac cone. If I don't use the T.I symmetry to constrain my effective H, I get an extra term that shouldn't exist.</div><div><br></div><div>Now, running QE for graphene at the K point, the XML file does not show this symmetry in the list of symmetries. My numerical analysis seems to show that this symmetry is weakly broken in the QE results.</div><div><br></div><div>So I wonder if this might be a bug. Should QE have found this symmetry? Is there a way to help it find it?</div><div>------------------------------------------</div><div><br></div><div><br></div><div>For the QE results this might be a very subtle issue that won't change the results significantly, but for my project it is actually important. If I don't apply all constraints in my code I end up with an ambiguity in the definition of the unitary matrix for the change of basis between the numerical QE results and the optimized basis based on the expected IRREPS. Essentially, the unitary matrix becomes a linear combination of two matrices, as in U = a.U1 + b.U2, and the resulting effective H will depend on these parameters (a,b). Any choice of (a,b) coefficients will result in a valid effective model H, but to "make it look good" we need to find an optimal (a,b) and the T.I constraint would do this for us automatically in this case.</div><div><br></div><div>If I don't get rid of this ambiguity, my code will require an input from the user to choose the coefficients (a,b) in this case, and maybe even more coefficients in more complex systems. </div><div><br></div><div>Thanks for the attention,</div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div style="font-family:arial"><div>--<br>Gerson J. Ferreira</div><div>Prof. Dr. @ InFis - UFU </div><div>----------------------------------------------</div><div style="font-family:Arial,Helvetica,sans-serif"><font face="arial"><a href="http://gjferreira.wordpress.com/" target="_blank">gjferreira.wordpress.com</a></font><br></div><div><font size="2" face="arial">Institute of Physics</font></div><div>Federal University of Uberlândia, Brazil</div><div style="font-family:Arial,Helvetica,sans-serif"><span style="font-family:arial">----------------------------------------------</span></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Jul 29, 2021 at 3:30 AM Paolo Giannozzi <<a href="mailto:p.giannozzi@gmail.com">p.giannozzi@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><div dir="ltr">On Thu, Jul 29, 2021 at 6:55 AM Gerson J. Ferreira <<a href="mailto:gersonjferreira@gmail.com" target="_blank">gersonjferreira@gmail.com</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><br><div>I know that QE can handle the magnetic symmetries, but it still has some issues there<br></div></div></blockquote><div><br></div><div>which issues are you referring to? <br></div></div><br clear="all"></div>Paolo<br><div>-- <br><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div>Paolo Giannozzi, Dip. Scienze Matematiche Informatiche e Fisiche,<br>Univ. Udine, via delle Scienze 206, 33100 Udine, Italy<br>Phone +39-0432-558216, fax +39-0432-558222<br><br></div></div></div></div></div></div></div>
</blockquote></div>