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the problem. A discussion of the electrostatic methods imple-
mented in FLAME is given in Section 6.

Once the gradient is computed, the system of linear equations
can be solved. The constraint of fixed total charge is fulfilled by
using the modified gradient given by gi � 1

N

P
N

l=1 gl. In the case
of free BC and a small number of atoms the system of equations
can be solved by means of direct methods, whereas for large
systems it is convenient to use an iterative scheme. In contrast,
for bulk structures the system of equations is always solved
iteratively, irrespective of the system size. Since the system of
linear equations is well-conditioned the total number of itera-
tions to reach sufficient convergence rarely exceeds 100 based
on extensive tests for small and medium sized systems. Also, it
is possible to significantly reduce this number when performing
molecular dynamics simulations or local geometry relaxations
with relatively small atomic displacements in consecutive time
steps since the initial guess for the atomic charges can be taken
from the converged values obtained in the previous step.

3.2. Potential training

Since ANN ML models do not have a functional form and
contain many parameters one may very easily encounter issues
due to over-fitting. Therefore, in contrast to usual force fields, one
must generate a large number of reference data points ranging
from thousands to tens of thousands of configurations. More
precisely, the training data must be sufficiently diverse and ex-
tensive to prevent over-fitting. In fact, the most challenging task
when constructing an accurate and transferable ML potential is
generating a suitable reference data set.

We commonly generate such a data set in several steps. First,
we start with a small set of configurations that is generated using
DFT calculations based on one of the following methods:

i ab initio molecular dynamics simulations starting from dif-
ferent well-known structures at a given composition.

ii random structures that are relaxed to within a very loose
tolerance, i.e., by performing only a few iterations as well
as using loose input parameters of the ab initio package.

iii elemental substitution in structural prototypes (e.g., such
obtain in earlier fitting data sets or online structure repos-
itories) together with an appropriate scaling of the inter-
atomic distances based on the atomic radii.

This small data set is then used to construct a first, approxi-
mate CENT potential with limited accuracy. The training process
is invoked in FLAME with task = ann and subtask = train,
as shown in Fig. 6 for the MgO system. The output files con-
taining the potential parameters (ANN weights) are written to
Mg.ann.param.yaml and O.ann.param.yaml for the Mg and O
atoms, respectively. In a next step, this preliminary potential is
used in multiple structure prediction runs to sample the PES with
various system sizes and starting from different seed configura-
tions. For this purpose we employ the MHM, which not only tries
to find the global minimum but also efficiently explores low-lying
portions of the PES (see Section 4.2.1 for details). In this way, a
large number of new structures is generated that can be used to
extend the initial training data set. Also, snapshots of each MD
trajectory within MHM runs can be selected to further extend the
set of new structures.

Since the approximate potential trained on the first, small
training set can produce nonphysical structures, we have to ex-
clude them and filter for structures with, e.g., unreasonable bond
lengths. We further screen the data set for configurations that
are too similar to each other by using distances of atomic en-
vironment descriptors or structural fingerprints in order to re-
tain a high structural diversity. This is done by task = ann

Fig. 5. Workflow of the CENT training procedure.

and subtask = check_symmetry_function, which calcu-
lates the distances of atomic environment descriptors. The dis-
tances are saved in a file that can be read by the python script
pickdiffconfs.py, which excludes similar structure based on
the tolerance that must be provided in the command line. Finally,
DFT calculations are performed on the new configurations to
update the training data set and construct a more accurate CENT
potential.

In practice, we repeat this process of refining the reference
data several times until the training set is sufficiently large and
contains diverse structures to reach the desired accuracy and
reliability of the resulting CENT potential. All the steps involved in
the procedure above are fully implemented in FLAME, i.e., training
an ANN potential, excluding similar structures, performing MHM
or MD runs to generate new structures, etc. Fig. 5 shows a
flowchart of the iterative CENT training algorithm.

3.3. Validating the implementation

We employ a set of tests to validate the correct implemen-
tation of the CENT method. One way of testing whether CENT
provides reliable energetics and dynamics is based on performing
a NVE simulation with a molecular dynamics integrator that is
time reversible. We use the velocity Verlet algorithm for this task.
Since our implementation of CENT provides atomic forces based
on exact, analytical derivatives of the potential energy, the sum of
the kinetic and potential energy is conserved along the trajectory.

To validate the implementation of the stress tensor we would
have to perform NPH dynamics. Unfortunately, available integra-
tors for such ensembles [42,43], where the equations of motions
for the reduced atomic coordinates and cell variables are coupled,
are not time reversible. Hence, we routinely employ an alter-
native method to validate our implementation based on a path
integral scheme with sufficiently small step size dEr . Conservative
force fields EF that are derived from the negative gradient of a
potential E, EF = �ErE, lead to zero net work W done by the
force when moving a system through a trajectory in a closed
loop C: W =
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C

EF · dEr = 0. Equivalently, any path taken from
configuration A to B must lead to the same work independent
of the path: W =
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ErE · dEr = E(A) � E(B).

We use multiple randomly generated trajectories that involve the
displacement of all atoms and cell parameters to ensure that the
path integral is sufficiently converged.


