<div dir="ltr"><div>Interesting. I report here a few comments I received from other people about the second sum rule:<br></div><div><br></div><div><ol><li>try to compute it on the dynamical matrix at Gamma for the
      supercell you can obtain with "matdyn.x" starting from interatomic the force constants</li><li>it seems to be associated with a rotation or homogeneous deformation and should be zero only at equilibrium (with respect to both internal coordinates and volume): try to compute it as a function of the volume.</li><li>it weights more heavily force constants that are far from the origin. These are truncated in a rather arbitrary way, so it might be tricky to get it with a good degree of accuracy  <br></li></ol></div><div>



</div><div>Paolo<br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Jun 8, 2020 at 10:19 PM Ville Härkönen <<a href="mailto:ville.j.harkonen@gmail.com">ville.j.harkonen@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Hi!</div><div><br></div><div>The following sum rule for the second order IFCs should hold<br></div><div><br></div><div>\sum_{l,k,k'} \Phi_{\alpha\beta}(lk,k') = 0.           (1)<br></div><div><br></div><div>Eq. (1) should hold when one uses the IFCs from the 'flfrc'-file and I checked this to be true (the largest contributions are of the order 10^-6 in the same units as the IFCs are written in the file) for the Si diamond (Si-d) structure. Also the following sum rule (this and the previous condition can be found from Born-Huang, Dynamical Theory of Crystal Lattices, p. 221, 1954.)<br></div><div><br></div><div>
\sum_{l,k,k'} \Phi_{\alpha\beta}(lk,k') [
x_{\gamma}(l) 

+ x_{\gamma}(k) - 
x_{\gamma}(k')

 ] = 0,          (2) <br></div><div><br></div><div>should hold for all 
\alpha, \beta, \gamma. However, if the 
IFCs from the 'flfrc'-file are used, Eq. (2) does not hold 
(the largest terms are of the order 10^-1), at least for the Si-d case in which Eq. (1) holds. I have used the lattice translational vectors</div><div><br></div><div>\vec{x}(l) = \sum
_{i}

 l_{i} 
\vec{a}_{i},     l_{i} = 0, 1,\ldots,L-1,<br></div><div><br></div><div>where 
\vec{a}_{i} are naturally chosen to be the same as in the QE input. When I use the IFCs of the
 'flfrc'-file to calculate the phonon frequencies, the same result is obtained as given by QE.<br></div><div><br></div><div>Could someone please confirm whether or not Eq. (2) holds, when the IFCs from the 
'flfrc'-file

are used? It's always possible that there is an error in my own calculations, but I have checked many times and haven't found any. If it turns out that Eq. (2) does not hold for the IFCs from the 'flfrc'-file, what might be the reason for that?</div><div></div><div><br></div><div>All the best,</div><div>Ville Härkönen</div><div>University of Jyväskylä<br>

</div></div>
_______________________________________________<br>
developers mailing list<br>
<a href="mailto:developers@lists.quantum-espresso.org" target="_blank">developers@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/developers" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/developers</a><br>
</blockquote></div><br clear="all"><br>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div>Paolo Giannozzi, Dip. Scienze Matematiche Informatiche e Fisiche,<br>Univ. Udine, via delle Scienze 208, 33100 Udine, Italy<br>Phone +39-0432-558216, fax +39-0432-558222<br><br></div></div></div></div></div>