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This  manuscript  offers  a  general  review  on  the derivation  of  Clausius–Mossotti  relation.
Clausius–Mossotti  relation  seems  to hold  best  for  gases  and  gives  reasonably  good  results  for  many  liquids
and  solids.  In  physics,  this  relation  connects  the  relative  permittivity  of  a  dielectric  to  the  polarizability
˛  of  the  atoms  or  molecules  constituting  the  dielectric.
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lausius–Mossotti relation

. Introduction

The Clausius–Mossotti relation is named after the Ital-
an physicist Ottaviano-Fabrizio Mossotti, whose 1850 book
ttp://en.wikipedia.org/wiki/Clausius%E2%80%93Mossotti relation
ite note-0 [1] analyzed the relationship between the dielectric
onstants of two different media, and the German physicist
udolf Clausius, who gave the formula explicitly in his 1879 book
ttp://en.wikipedia.org/wiki/Clausius%E2%80%93Mossotti relation
ite note-1 [2] in the background not of dielectric constants but
f indices of refraction [3]. The same formula also arises in the
ackground of conductivity, in which it is known as Maxwell’s
ormula. It arises yet again in the background of refractivity, in
hich it is known as the Lorentz–Lorenz equation [4–8]. It is used
hen there is no contribution from permanent electric dipole
oments to the polarization, either because the molecules are

onpolar or because the frequency of the applied field is high.

. Derivations of Clausius–Mossotti relation and dependent
elations
For explain of Clausius–Mossotti relation we should survey the
olarization density. The polarization density is determined by
hree factors: (1) The electronic polarization ˛e produced by oppo-

∗ Corresponding author.
E-mail address: m.talebian@urmia.ac.ir (M.  Talebian).

030-4026/$ – see front matter ©  2012 Elsevier GmbH. All rights reserved.
ttp://dx.doi.org/10.1016/j.ijleo.2012.06.090
site displacements of negative electrons and positive nuclei inside
the same atoms. (2) The ionic polarizability ˛i produced by oppo-
site displacements of positive and negative ions in the material [9].
(3) Contributions from the permanent dipole moments of complex
ions or molecules at any time when such permanent dipoles are
present in the material. It is possible to express this in below form
[10,11]:

P = N

(
˛e + ˛i + �2

3kT

)
(1)

The number of atoms or molecules per unit volume is N.
For best realizing of Eq. (1) should explain some about derivative

of this relation for this purpose we  plot the element of solid angle
dω on a unit sphere.

From Fig. 1, we can see for dω in below expression:

dω = 2� sin � d� (2)

This relation is the number of dipoles/cu. meter having dipole
moment between the value � and (� + d�) is given by:

dN = A ε(�E cos � /kT) sin� d� (3)

where A is a constant of proportionality. The constant A may be
computed making use of the fact that N, namely the total number
of molecules per unit volume equals the integration of right hand

side of Eq. (3) over the limit 0 to �. Then we have:

A = N∫ �

0
ε(�E cos �/kT) sin � d�

(4)

dx.doi.org/10.1016/j.ijleo.2012.06.090
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://en.wikipedia.org/wiki/Clausius%E2%80%93Mossotti_relation-cite_note-0
http://en.wikipedia.org/wiki/Clausius%E2%80%93Mossotti_relation-cite_note-1
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sphere:

E2 = −EP = P

3ε0
(15)
Fig. 1. Element of solid state angle dω on a sphere of unit radius.

The contribution to the total dipole moment in the z direction
y dipoles which having dipole moments between � and (� + d�)
re given by [12–14]:

P = dN � cos � (5)

he total dipole moment in the z direction is in form which
xpressed by:

 =
∫ �

�

dN � cos � = A�

∫ �

�

ε(�E cos �/kT)sin� cos � d� (6)

y using of Eq. (4) into Eq. (6), we get:

 = N�

∫ �

�
ε(�E cos �/kT) sin � cos � d�∫ �

�
ε(�E cos �/kT) sin � d�

(7)

y replacing of b = �E/kT, x = cos�, we find for dx,  dx = −sin� d�. So
q. (7) simplifying to below form:

 = N�

∫ 1
−1

εbxx dx∫ 1
−1

εbxdx
(8)

o evaluate the integral in the numerator, we integrate by part.
hen we will have [15–17]:

 = N�
(

coth b − 1
b

)
= N�L(b) (9)

here L(b) = coth b − 1/b,  the function L(b) was  introduced by
angevin in 1905 and is called the Langevin function. At room tem-
erature, for typical electric fields in laboratories, �E � kT,  so we
ave:

(b) ≈ b

3
= �E

3kT
(10)

ia Eq. (9) we get below relation for the average dipole moment:

 = N�2E

3kT
(11)

he orientational polarizability per molecule is given by:

0 = P/N

E
= �2

3kT
(12)

� has values of the order of 10−30 coulomb-meter. At room tem-
erature we find that ˛0 has value of order 10−40 cubic-meter. This
alue of ˛0 is of the same order as electronic polarizability ˛e. In a

olyatomic gas, total polarization may  result from electronic, ionic
nd orientational polarizabilities. Then, the total polarization per
nit volume is given by Eq. (1). Eq. (1) is based on the assumption
hat the total polarization is proportional to E.
Fig. 2. Parallel plate capacitor.

The electric susceptibility is then obtained via substituting Eq.
(1) in � = k − 1 as we  know, also P = ε0�E:

� = k − 1 = N

(
˛e + ˛i + �2

3kT

)
(13)

The contribution to P from the permanent dipoles present in the
matter is temperature-dependent. It is thus possible to measure
these dipole moments by observing the temperature dependence
of the electric susceptibility. No restrictions have been placed on
the nature of the dielectric material, that is, whether it is a gas, a
liquid, or a crystalline substance. If attention is limited to crystals,
then it is necessary to take into account the influence on an atom of
the internal field produced by the dipoles surrounding the atoms as
well as the influence of the externally applied field. The procedure
of finding Etotal is described in Figs. 2 and 3.

Point P which the reference molecule is situated is the center of a
sphere of sufficiently large radius and then the dielectric is outside
it may  be treated as a continuum. If we imagine the molecules inside
the sphere removed the polarization outside considered frozen, so
the field acting on the molecule at P maybe thought of as comes
from the following sources.

Etotal = E1 + E2 + E3 (14)

(1) The free charges at the electrodes of the capacitor. The field
due to these charges is equal to the applied field E1. (2) The charges
on the spherical cavity surface. The field due to these charges is
denoted by E2. (3) The charge due to all the other molecules inside
the cavity and shown by E3.

To find the field E2, we  express that the charge distribution on
a dielectric sphere removed from a uniformly polarized dielectric
slab is exactly the same, but of opposite sign to that on the spherical
cavity (Figs. 2 and 3). Hence, the fields due to these charge distribu-
tion have the same magnitude and opposite directions. As we  know
that from EP = −�ϕ = −P/3ε0 due to a uniformly polarized dielectric
Fig. 3. Spherical cavity.
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The molecules inside the spherical cavity are polarized in the
resence of an electric field and thus either act as induced dipoles
r if they have a permanent dipole moment, arrange in a line them-
elves to a certain extent towards the direction of the field. The field
1 due to the dipoles within the cavity would depend on the struc-
ure of the dielectric material. It has been shown that E1 = 0 for

aterials whose atoms have a simple cubic lattice structure. For
ost isotropic materials E1 � 0. Then with Eqs. (15) and (16) we
ill have:

total = E1 + P

3ε0
(16)

Eq. (16) is known as the Lorentz relation. Ptotal is the dipole
oment of a molecule in a polarized isotropic dielectric; we defined

he polarizability  ̨ of a molecule of the dielectric:

total = ε0˛Etotal (17)

he polarization P is defined by:

 = Nptotal = ε0N˛Etotal = ε0N˛
(

E + P

3ε0

)
(18)

here N is the molecules per unit volume. By sum displacements
or P parameter we have:

 = N˛

1 − N˛/3
ε0E (19)

omparing Eq. (19) with � = k − 1 we can observe that:

 = ε0�eE = ε0 (k − 1)E (20)

ith solving of above relation for �, we observe that:

e = k − 1 = N˛

1 − N˛/3
(21)

This relation relates the macroscopic susceptibility �e or dielec-
ric constant k to the microscopic polarizability  ̨ of the molecules
f the dielectric. Eq. (21) simply changes to below relation for ˛
18–21]:

 = 3
N

(
k − 1
k + 2

)
(22)

Eq. (22) is known as the Clausius–Mossotti relation. It used to
etermine of the electrical polarizabilities of the atoms if the dielec-
ric constant is known. Conversely, the dielectric constants of new

aterials can be predicted from knowledge of the individual pola-
izabilities of the atoms according to Eq. (22), the polarizabilities
re additive. This relation is also valid for electronic polarizabilities
e and dipolar polarizabilities ˛d. Eq. (22) can be written in form
f:

n2 − 1
n2 + 2

= 1
3

∑
i

ni˛i (23)

here k = n2 and N  ̨ = ∑
ini˛i. Eq. (23) is called the Lorenz–Lorentz

elation. When n is very nearly equal to unity, then n2 + 2 � 3, Eq.
23) becomes:

2 = k = 1 +
∑

i

ni˛i (24)

q. (24) can be compared with k = 1 + �e. With multiplying of M/D
o both sides of Eq. (23) we will have:

2
M

D

n − 1
n2 + 2

= 1
3

N0  ̨ (25)

here M is the molecular weight and D is the density, N0 is Avo-
adro’s number and  ̨ is the polarizability of a molecule, then

[
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Eq. (25) can be used to calculate the molar polarizability or the
molar refractivity. Above relation allows one to relate the index of
refraction of a crystal to its structure.

3. Remarks and conclusions

1) If we  generalized Eq. (12) in general form for the molecular
polarizability which in present of induced electronic and ori-
entational polarization, then, Eq. (12) indicates a temperature
dependence of the form A + B/T which seems to be well con-
firmed by experiment [22].

2) The subject of this paper is put in appropriate historical con-
text and addressed from different physical aspects. With the
Clausius–Mossotti relation the dielectric properties of materi-
als were essentially reduced to known electrical properties. This
relation is between the dielectric constant of a material to the
polarizability of its atoms [23,24]. If the Clausius–Mossotti is
taken seriously, we  should able to calculate  ̨ from the refractive
index in gas phase and then predict k or n2 in the liquid phase
at much higher density.
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