
Total energy and Kohn-Sham Hamiltonian of a crystal within DFT
Let us consider a crystal with N → ∞ unit cells of volume Ω, periodically repeated, with lattice vectors R. (Pseudo–)Atoms of type µ and ionic charge Zµ are
located at dµ in the unit cell. The system contains N

∑
µ Zµ electrons. Its electron states are described by N points k in the Brillouin Zone. Assuming for simplicity

a local electron-ion potential V̂ µ:

Etot = Ekin + Eion−el + EHartree + Exc + Eion−ion (1)

= − h̄2

2m

∑
k,v

∫
ψ∗k,v(r)∇2ψk,v(r)dr +

∑
k,v,µ,R

∫
ψ∗k,v(r)V̂ µ(r− dµ −R)ψk,v(r)dr

+
e2

2

∫
n(r)n(r′)
| r− r′ |

drdr′ +
∫
n(r)εxc[n(r)]dr +

e2

2

′∑
µ,ν,R,R′

ZµZν
| dµ + R− dν −R′ |

(2)

where the electron charge density n(r) is given by
n(r) =

∑
k,v

| ψk,v(r) |2 (3)

(the sum is over the lowest
∑
µ Zµ occupied states for a semiconductor or insulator, up to the Fermi surface for a metal). Integrals extend on all space. The primed

sum appearing in the ion-ion term excludes terms with dµ + R− dν −R′ = 0.
The Kohn-Sham equation is [

− h̄2

2m
∇2 +

∑
µ,R

V̂ µ(r− dµ −R) + e2
∫

n(r′)
| r− r′ |

dr′ + Vxc(r)
]
ψk,v(r) = εk,vψk,v(r) (4)

where the exchange-correlation potential Vxc(r) = (δExc/δn(r)). For the LDA case only:

Exc[n(r)] =
∫
n(r)εxc(n(r))dr, Vxc(r) =

d

dn

(
nεxc(n)

)
n=n(r)

(5)

From the Kohn-Sham equation we obtain, by summing over occupied states:

∑
k,v

εk,v = − h̄2

2m

∑
k,v

∫
ψ∗k,v(r)∇2ψk,v(r)dr +

∑
k,v,µ,R

∫
ψ∗k,v(r)V̂ µ(r− dµ −R)ψk,v(r) + e2

∫
n(r)n(r′)
| r− r′ |

drdr′ +
∫
n(r)Vxc(r)dr (6)

and we can give an alternate formula for the total energy of a crystal:

Etot =
∑
k,v

εk,v −
e2

2

∫
n(r)n(r′)
| r− r′ |

drdr′ +
∫
n(r) (εxc(r)− Vxc(r)) dr +

e2

2

′∑
µ,ν,R,R′

ZµZν
| dµ + R− dν −R′ |

(7)
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Plane-wave – Pseudopotential formalism
Let us consider the G-space representation of the wavefunctions:

|ψk >=
∑
G

Ψ(k + G)|k + G >, Ψ(k + G) =< k + G | ψk >, | k + G >=
1√
V
ei(k+G)r, (8)

where V = NΩ is the volume of the crystal. With these definitions, the normalizations are:

< k + G|k + G >′= δG,G′ , < ψk|ψk >= 1 if
∑
G

|Ψ(k + G)|2 = 1. (9)

Let us define the Fourier trasform for a periodic function F (r) =
∑

R f(r−R) as:

F (G) =
1
NΩ

∫
drF (r)e−iGr =

1
Ω

∫
drf(r)e−iGr =< k + G1 | F (r) | k + G2 > , G = G1 −G2 (10)

F (r) =
∑
G

F (G)eiGr. (11)

We assume non local pseudopotential of general form V̂ µ = Vµ(r) +
∑
i Vµ,i(r, r

′). The total energy per unit cell in reciprocal space is:

Etot
N

=
1
N

h̄2

2m

∑
k,v

∑
G

| Ψv(k + G) |2(k + G)2 + Ω
∑
G

n∗(G)
∑
µ

Sµ(G)Vµ(G) +
1
N

∑
k,v

∑
µ,i

∑
G,G′

Sµ(G−G′)×

×Ψ∗v(k + G)Ψv(k + G′)Vµ,i(k + G,k + G′) +
Ω
2

∑
G

n∗(G)VHartree(G) + Ω
∑
G

n∗(G)εxc(G)dr +
e2

2

′∑
µ,ν,R

ZµZν
| dµ − dν −R |

(12)

where Sµ(G) =
∑
µ e
−iGdµ is the structure factor, and

VHartree(G) = 4πe2
n(G)
G2

, Vµ(G) =
1
Ω

∫
Vµ(r)e−iGrdr, Vµ,i(k1,k2) =

1
Ω

∫
e−ik1rVµ,i(r, r′)eik2r

′
drdr′. (13)

Note that we have assumed one atom of each kind. The generalization is straightforward: the structure factor becomes Sµ(G) =
∑
iµ
e−iGdiµ where iµ runs over

atoms of the same kind µ.
Using eigenvalues sum, the total energy per unit cell is

Etot
N

=
1
N

∑
k,v

εk,v −
Ω
2

∑
G

n∗(G)VHartree(G) + Ω
∑
G

n∗(G) (εxc(G)− Vxc(G)) +
e2

2

′∑
µ,ν,R

ZµZν
| dµ − dν −R |

. (14)

In the plane-wave representation the Kohn-Sham equation becomes∑
G′

< k + G | H − ε | k + G′ > Ψ(k + G′) = 0, or
∑
G′

< k + G | H | k + G′ > Ψ(k + G′) = εΨ(k + G) (15)
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The matrix elements of the hamiltonian are

< k + G | H − ε | k + G′ > =
(
− h̄2

2m
(k + G)2 − ε

)
δGG′ +

∑
µ

Sµ(G−G′)
(
Vµ(G−G′) +

∑
i

Vµ,i(k + G,k + G′)
)

+ VHartree(G−G′) + Vxc(G−G′). (16)

Divergent Terms in the potential
The Hartree term, VHartree(0), and local potential term,

∑
µ Sµ(0)Vµ(0), are separately divergent and must be treated in a special way. Let us consider their sum

Ṽ (r) = Vloc(r) + VHartree(r). Its G = 0 term is not divergent:

Ṽ (G = 0) =
1
Ω

∫
dr

(∑
µ

Vµ(r− dµ) +
1
N
e2
∫

n(r′)
|r− r′|

dr′
)

=
1
Ω

∑
µ

∫
dr
(
Vµ(r) +

Zµe
2

r

)
=

1
Ω

∑
µ

αµ (17)

where we used

Vµ(r) ∼ −Zµe
2

r
for large r,

1
N

∫
n(r) =

∑
µ

Zµ. (18)

The αµ are parameters depending only on the pseudopotential.
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Divergent Terms in the energy
The G = 0 terms of the ion-ion, Hartree, and local pseudopotential terms in the total energy are separately divergent and must be treated in a special way. Let us
call Ediv the sum of all divergent terms.
First Step: split Ediv = E

(1)
div + E

(2)
div, with

E
(1)
div =

∫
n(r)

∑
µ

Vµ(r− dµ)dr +
1
N
e2
∫
n(r)n(r′)
|r− r′|

drdr′ (19)

E
(2)
div =

e2

2

′∑
µ,ν,R

ZµZν
|dµ − dν −R|

− 1
N

e2

2

∫
n(r)n(r′)
|r− r′|

drdr′ (20)

Using the previous definition of Ṽ (r), the first divergent term can be written as

E
(1)
div =

∫
n(r)Ṽ (r)dr. (21)

The G = 0 term of Ṽ (G) is not divergent and has been previously calculated:

Ṽ (G = 0) =
1
Ω

∑
µ

αµ, n(G = 0) =
∑
µ

Zµ
Ω
. (22)

We finally get for the G = 0 contribution what is usually called “αZ term”:

E
(1)
div = Ω

∑
G6=0

n∗(G)Ṽ (G) +
1
Ω

(
∑
µ

Zµ)(
∑
µ

αµ) = Ω
∑
G

n∗(G)Ṽloc(G) + 2ẼHartree (23)

where Ṽloc is the local potential for G 6= 0, contains the αZ term in G = 0 component, and

ẼHartree =
Ω
2

∑
G6=0

n∗(G)VHartree(G). (24)

Second step: write E(2)
div = E

(1)
Ewald + E

(2)
Ewald − EHartree, with

E
(1)
Ewald =

e2

2

′∑
µ,ν,R

ZµZν
|dµ − dν −R|

erfc(
√
η|dµ − dν −R|) , E

(2)
Ewald =

e2

2

∑
µ,ν,R

ZµZν
|dµ − dν −R|

erf(
√
η|dµ − dν −R|)− e2

√
η

π

∑
µ

Z2
µ. (25)

This identity is verified for any value of η. The sum in E
(2)
Ewald includes the term with dµ − dν −R = 0 (note the missing prime), that is subtracted back in the

second term of E(2)
Ewald (note that erf(x)→ 2x/

√
π for small x).
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The first Ewald term E
(1)
Ewald is rapidly convergent in real space for any reasonable values of η.

The sum in E
(2)
Ewald can be written as the interaction energy between point charges nc(r) and the potential Vg(r) produced by a gaussian distribution of charges:

E
(2)
Ewald =

1
2

∫
nc(r)Vg(r)dr− e2

√
η

π

∑
µ

Z2
µ , nc(r) =

∑
µ

Zµδ(r− dµ) , Vg(r) = e2
∑
µ,R

Zµerf(
√
η|r− dµ −R|)

|r− dµ −R|
(26)

In reciprocal space, by using the Fourier transform

1
r′

erf(
√
ηr′) =

( η
π

)3/2
∫

e−ηr
2

|r− r′|
dr =

∫
4πe−G

2/4η

G2
eiG·r

′
dG (27)

one obtains (forgetting for the moment the divergence of Vg(G = 0)):

E
(2)
Ewald =

Ω
2

∑
G

n∗c(G)Vg(G)− e2
√
η

π

∑
µ

Z2
µ , nc(G) =

1
Ω

∑
µ

Zµe
iG·dµ , Vg(G) =

4πe2

Ω

∑
µ

Zµe
iG·dµ e

−G2/4η

G2
(28)

The G = 0 contribution to E(2)
Ewald − EHartree:

E0 =
Ω
2

(nc(0)Vg(0)− n(0)VHartree(0)) (29)

is no longer divergent, because n(0) = nc(0) =
∑
µ Zµ/Ω due to the neutrality of the system:

(Vg − VHartree)(G = 0) =
e2

NΩ

∫ ∑
µ,R

Zµ
erf(
√
η|r− dµ −R)|)
|r− dµ −R)|

−
∫

n(r′)
|r− r′|

dr′

 dr

=
e2

Ω

(∑
µ

Zµ

)∫
erf(
√
ηr)− 1
r

dr =
e2

Ω

(∑
µ

Zµ

)
π

η
(30)

The integral appearing in the last expression can be found in tables:∫
erf(
√
ηr)− 1
r

dr = 4π
∫

(erf(
√
ηr)− 1)rdr = 4π

1
4η
. (31)

Putting all pieces together, one obtains for E(2)
div:

E
(2)
div = −Ẽhartree + EEwald = −Ω

2

∑
G6=0

n∗(G)VHartree(G) +
4π
Ω
e2

2

∑
G6=0

∣∣∣∣∣∑
µ

Zµe
iGdµ

∣∣∣∣∣
2
e−G

2/4η

G2

+
e2

2

′∑
µ,ν,R

ZµZν
|dµ − dν −R|

erfc(
√
η|dµ − dν −R|)− e2

√
η

π

∑
µ

Z2
µ −

4π
Ω
e2

2
1
4η

(∑
µ

Zµ

)2

(32)
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and for the total energy:

Etot
N

=
1
N

h̄2

2m

∑
k,v

∑
G

| Ψv(k + G) |2(k + G)2 +
1
N

∑
k,v

∑
µ,i

∑
G,G′

Sµ(G−G′)Ψ∗v(k + G)Ψv(k + G′)Vµ,i(k + G,k + G′)

+ Ω
∑
G

n∗(G)εxc(G) + Ω
∑
G

n∗(G)Ṽloc(G) + ẼHartree + EEwald. (33)

One can use the sum of the eigenvalues to calculate the total energy: the kinetic, non local, and local (including the αZ term) contributions disappear and the
expression of the total energy becomes:

Etot
N

=
1
N

∑
k,v

εk,v + Ω
∑
G

n∗(G) (εxc(G)− Vxc(G))− ẼHartree + EEwald. (34)

Calculation of energy in CP
Let us define ng as the sum of gaussian charges centered at atomic sites:

ng(r) =
∑
µ

Zµ

( η
π

)3/2

e−η(r−dµ)2 . (35)

The divergent terms Ediv of the energy can be rewritten as Ediv = E
(1)
div + E

(2)
div, with

E
(1)
div =

∫
n(r)

∑
µ

Vµ(r− dµ)dr− 1
N
e2
∫
n(r)ng(r′)
|r− r′|

drdr′ (36)

E
(2)
div =

e2

2

′∑
µ,ν,R

ZµZν
|dµ − dν −R|

+
1
N

e2

2

∫
n(r)n(r′)
|r− r′|

drdr′ +
1
N
e2
∫
n(r)ng(r′)
|r− r′|

drdr′ (37)

E
(1)
div can be rewritten as

E
(1)
div =

∫
n(r)Vloc+g(r)dr, Vloc+g(r) =

(∑
µ

Vµ(r− dµ) + Vg(r)

)
, (38)

where Vg(r) is the potential generated by the gaussians. The singularity at G = 0 disappears :

Vloc+g(G = 0) =
1
Ω

∑
µ

∫
dr
(
Vµ(r) +

Zµe
2erf(
√
ηr)

r

)
≡ 1

Ω

∑
µ

α′µ. (39)
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Note that this term is similar to, but not equal to, the αZ term. E(1)
div can be rewritten as:

E
(1)
div =

1
Ω

(∑
µ

Zµ

)(∑
µ

α′µ

)
+ Ω

∑
G6=0

n∗(G)Vloc+g(G). (40)

E
(2)
div can be rewritten as E(2)

div = EEwald + EH+g, where EEwald is the well-known Ewald sum,

EEwald =
e2

2

′∑
µ,ν,R

ZµZν
|dµ − dν −R|

− 1
N

e2

2

∫
ng(r)ng(r′)
|r− r′|

drdr′, (41)

while EH+g is the electrostatic energy of a system of electrons and ions with a gaussian charge distribution:

EH+g =
1
N

e2

2

∫
(n(r) + ng(r))(n(r′) + ng(r′))

|r− r′|
drdr′. (42)

Both terms are regular at G = 0 because they are the electrostatic energy of neutral systems. EH+g can be directly calculated:

EH+g = Ω
∑
G6=0

(n∗(G) + n∗g(G))VH+g(G), VH+g(G) =
4πe2

G2
(n(G) + ng(G)) . (43)

EEwald can be easily computed using the same technique used before:

EEwald = E
(1)
Ewald + E

(2)
Ewald, (44)

where (note the sum over all vectors including dµ − dν −R = 0):

E
(1)
Ewald =

e2

2

∑
µ,ν,R

ZµZν
|dµ − dν −R|

erf(
√
ζ|dµ − dν −R|)− 1

N

e2

2

∫
ng(r)ng(r′)
|r− r′|

drdr′ (45)

and (note the self-interaction term compensating the dµ − dν −R = 0 contribution of the former term):

E
(2)
Ewald =

e2

2

′∑
µ,ν,R

ZµZν
|dµ − dν −R|

erfc(
√
ζ|dµ − dν −R|)− e2

√
ζ

π

∑
µ

Z2
µ. (46)

for an arbitrary value of ζ. E(1)
Ewald can be made to vanish, because both terms appearing in it can be written in reciprocal space as an Ewald sum. Leaving apart

the G = 0 contribution,

1
N

e2

2

∫
ng(r)ng(r′)
|r− r′|

drdr′ =
Ω
2

∑
G6=0

n∗g(G)Vg(G) =
4π
Ω
e2

2

∑
G 6=0

∣∣∣∣∣∑
µ

Zµe
iG·dµ

∣∣∣∣∣
2
e−G

2/2η

G2
. (47)
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This expression comes from the Fourier transform of ng(r) and Vg(r):

ng(G) =
1
Ω

∑
µ

Zµe
iG·dµe−G

2/4η, Vg(G) =
4πe2ng(G)

G2
. (48)

By setting 2ζ = η, one finds exactly the reciprocal space expression for the first term:

e2

2

∑
µ,ν,R

ZµZν
|dµ − dν −R|

erf(
√
ζ|dµ − dν −R|) =

4π
Ω
e2

2

∑
G 6=0

∣∣∣∣∣∑
µ

Zµe
iG·dµ

∣∣∣∣∣
2
e−G

2/4ζ

G2
. (49)

E
(2)
Ewald is a rapidly convergent sum in real space, plus a term coming from the self-interaction of gaussians.

Miscellaneous
When a set of special points {ki}, with weights wi,

∑
i wi = 1, is used to sample the Brillouin Zone, one has:

1
N

∑
k

f(k) =⇒
∑
i

wif(ki). (50)

The ψ(r) as defined above are vanishingly small in order to be normalized. What is actually calculated, and used in the Fast Fourier Transform algorithm, is√
Nψ(r): Ψ(k + G) FFT←→

√
Nψ(r). This ensures the correct normalization of the charge density.
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