Total energy and Kohn-Sham Hamiltonian of a crystal within DFT
Let us consider a crystal with $N \rightarrow \infty$ unit cells of volume Ω, periodically repeated, with lattice vectors \mathbf{R}. (Pseudo-)Atoms of type μ and ionic charge Z_{μ} are located at \mathbf{d}_{μ} in the unit cell. The system contains $N \sum_{\mu} Z_{\mu}$ electrons. Its electron states are described by N points \mathbf{k} in the Brillouin Zone. Assuming for simplicity a local electron-ion potential \hat{V}^{μ} :

$$
\begin{align*}
E_{t o t}= & E_{k i n}+E_{\text {ion-el }}+E_{\text {Hartree }}+E_{x c}+E_{\text {ion-ion }} \tag{1}\\
= & -\frac{\hbar^{2}}{2 m} \sum_{\mathbf{k}, v} \int \psi_{\mathbf{k}, v}^{*}(\mathbf{r}) \nabla^{2} \psi_{\mathbf{k}, v}(\mathbf{r}) d \mathbf{r}+\sum_{\mathbf{k}, v, \mu, \mathbf{R}} \int \psi_{\mathbf{k}, v}^{*}(\mathbf{r}) \hat{V}^{\mu}\left(\mathbf{r}-\mathbf{d}_{\mu}-\mathbf{R}\right) \psi_{\mathbf{k}, v}(\mathbf{r}) d \mathbf{r} \\
& +\frac{e^{2}}{2} \int \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\int n(\mathbf{r}) \epsilon_{x c}[n(\mathbf{r})] d \mathbf{r}+\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}, \mathbf{R}^{\prime}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}+\mathbf{R}-\mathbf{d}_{\nu}-\mathbf{R}^{\prime}\right|} \tag{2}
\end{align*}
$$

where the electron charge density $n(\mathbf{r})$ is given by

$$
\begin{equation*}
n(\mathbf{r})=\sum_{\mathbf{k}, v}\left|\psi_{\mathbf{k}, v}(\mathbf{r})\right|^{2} \tag{3}
\end{equation*}
$$

(the sum is over the lowest $\sum_{\mu} Z_{\mu}$ occupied states for a semiconductor or insulator, up to the Fermi surface for a metal). Integrals extend on all space. The primed sum appearing in the ion-ion term excludes terms with $\mathbf{d}_{\mu}+\mathbf{R}-\mathbf{d}_{\nu}-\mathbf{R}^{\prime}=0$.
The Kohn-Sham equation is

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+\sum_{\mu, \mathbf{R}} \hat{V}^{\mu}\left(\mathbf{r}-\mathbf{d}_{\mu}-\mathbf{R}\right)+e^{2} \int \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime}+V_{x c}(\mathbf{r})\right] \psi_{\mathbf{k}, v}(\mathbf{r})=\epsilon_{\mathbf{k}, v} \psi_{\mathbf{k}, v}(\mathbf{r}) \tag{4}
\end{equation*}
$$

where the exchange-correlation potential $V_{x c}(\mathbf{r})=\left(\delta E_{x c} / \delta n(\mathbf{r})\right)$. For the LDA case only:

$$
\begin{equation*}
E_{x c}[n(\mathbf{r})]=\int n(\mathbf{r}) \epsilon_{x c}(n(\mathbf{r})) d \mathbf{r}, \quad V_{x c}(\mathbf{r})=\frac{d}{d n}\left(n \epsilon_{x c}(n)\right)_{n=n(\mathbf{r})} \tag{5}
\end{equation*}
$$

From the Kohn-Sham equation we obtain, by summing over occupied states:

$$
\begin{equation*}
\sum_{\mathbf{k}, v} \epsilon_{\mathbf{k}, v}=-\frac{\hbar^{2}}{2 m} \sum_{\mathbf{k}, v} \int \psi_{\mathbf{k}, v}^{*}(\mathbf{r}) \nabla^{2} \psi_{\mathbf{k}, v}(\mathbf{r}) d \mathbf{r}+\sum_{\mathbf{k}, v, \mu, \mathbf{R}} \int \psi_{\mathbf{k}, v}^{*}(\mathbf{r}) \hat{V}^{\mu}\left(\mathbf{r}-\mathbf{d}_{\mu}-\mathbf{R}\right) \psi_{\mathbf{k}, v}(\mathbf{r})+e^{2} \int \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\int n(\mathbf{r}) V_{x c}(\mathbf{r}) d \mathbf{r} \tag{6}
\end{equation*}
$$

and we can give an alternate formula for the total energy of a crystal:

$$
\begin{equation*}
E_{t o t}=\sum_{\mathbf{k}, v} \epsilon_{\mathbf{k}, v}-\frac{e^{2}}{2} \int \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\int n(\mathbf{r})\left(\epsilon_{x c}(\mathbf{r})-V_{x c}(\mathbf{r})\right) d \mathbf{r}+\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}, \mathbf{R}^{\prime}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}+\mathbf{R}-\mathbf{d}_{\nu}-\mathbf{R}^{\prime}\right|} \tag{7}
\end{equation*}
$$

Plane-wave - Pseudopotential formalism

Let us consider the \mathbf{G}-space representation of the wavefunctions:

$$
\begin{equation*}
\left|\psi_{\mathbf{k}}>=\sum_{\mathbf{G}} \Psi(\mathbf{k}+\mathbf{G})\right| \mathbf{k}+\mathbf{G}>, \quad \Psi(\mathbf{k}+\mathbf{G})=<\mathbf{k}+\mathbf{G}\left|\psi_{\mathbf{k}}>, \quad\right| \mathbf{k}+\mathbf{G}>=\frac{1}{\sqrt{V}} e^{i(\mathbf{k}+\mathbf{G}) \mathbf{r}} \tag{8}
\end{equation*}
$$

where $V=N \Omega$ is the volume of the crystal. With these definitions, the normalizations are:

$$
\begin{equation*}
<\mathbf{k}+\mathbf{G}\left|\mathbf{k}+\mathbf{G}>^{\prime}=\delta_{\mathbf{G}, \mathbf{G}^{\prime}}, \quad<\psi_{\mathbf{k}}\right| \psi_{\mathbf{k}}>=1 \quad \text { if } \quad \sum_{\mathbf{G}}|\Psi(\mathbf{k}+\mathbf{G})|^{2}=1 \tag{9}
\end{equation*}
$$

Let us define the Fourier trasform for a periodic function $F(\mathbf{r})=\sum_{\mathbf{R}} f(\mathbf{r}-\mathbf{R})$ as

$$
\begin{align*}
F(\mathbf{G}) & =\frac{1}{N \Omega} \int d \mathbf{r} F(\mathbf{r}) e^{-i \mathbf{G r}}=\frac{1}{\Omega} \int d \mathbf{r} f(\mathbf{r}) e^{-i \mathbf{G r}}=<\mathbf{k}+\mathbf{G}_{1}|F(\mathbf{r})| \mathbf{k}+\mathbf{G}_{2}>, \quad \mathbf{G}=\mathbf{G}_{1}-\mathbf{G}_{2} \\
F(\mathbf{r}) & =\sum_{\mathbf{G}} F(\mathbf{G}) e^{i \mathbf{G r} \mathbf{r}} \tag{11}
\end{align*}
$$

We assume non local pseudopotential of general form $\hat{V}^{\mu}=V_{\mu}(r)+\sum_{i} V_{\mu, i}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$. The total energy per unit cell in reciprocal space is:

$$
\begin{align*}
\frac{E_{t o t}}{N}= & \frac{1}{N} \frac{\hbar^{2}}{2 m} \sum_{\mathbf{k}, v} \sum_{\mathbf{G}}\left|\Psi_{v}(\mathbf{k}+\mathbf{G})\right|^{2}(\mathbf{k}+\mathbf{G})^{2}+\Omega \sum_{\mathbf{G}} n^{*}(\mathbf{G}) \sum_{\mu} S_{\mu}(\mathbf{G}) V_{\mu}(\mathbf{G})+\frac{1}{N} \sum_{\mathbf{k}, v} \sum_{\mu, i} \sum_{\mathbf{G}, \mathbf{G}^{\prime}} S_{\mu}\left(\mathbf{G}-\mathbf{G}^{\prime}\right) \times \\
& \times \Psi_{v}^{*}(\mathbf{k}+\mathbf{G}) \Psi_{v}\left(\mathbf{k}+\mathbf{G}^{\prime}\right) V_{\mu, i}\left(\mathbf{k}+\mathbf{G}, \mathbf{k}+\mathbf{G}^{\prime}\right)+\frac{\Omega}{2} \sum_{\mathbf{G}} n^{*}(\mathbf{G}) V_{\text {Hartree }}(\mathbf{G})+\Omega \sum_{\mathbf{G}} n^{*}(\mathbf{G}) \epsilon_{x c}(\mathbf{G}) d \mathbf{r}+\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \tag{12}
\end{align*}
$$

where $S_{\mu}(\mathbf{G})=\sum_{\mu} e^{-i \mathbf{G d}_{\mu}}$ is the structure factor, and

$$
\begin{equation*}
V_{\text {Hartree }}(\mathbf{G})=4 \pi e^{2} \frac{n(\mathbf{G})}{\mathbf{G}^{2}}, \quad V_{\mu}(\mathbf{G})=\frac{1}{\Omega} \int V_{\mu}(\mathbf{r}) e^{-i \mathbf{G r}} d \mathbf{r}, \quad V_{\mu, i}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\frac{1}{\Omega} \int e^{-i \mathbf{k}_{1} \mathbf{r}} V_{\mu, i}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) e^{i \mathbf{k}_{2} \mathbf{r}^{\prime}} d \mathbf{r} d \mathbf{r}^{\prime} \tag{13}
\end{equation*}
$$

Note that we have assumed one atom of each kind. The generalization is straightforward: the structure factor becomes $S_{\mu}(\mathbf{G})=\sum_{i_{\mu}} e^{-i \mathbf{G d}_{\mathbf{i} \mu}}$ where i_{μ} runs over atoms of the same kind μ.
Using eigenvalues sum, the total energy per unit cell is

$$
\begin{equation*}
\frac{E_{t o t}}{N}=\frac{1}{N} \sum_{\mathbf{k}, v} \epsilon_{\mathbf{k}, v}-\frac{\Omega}{2} \sum_{\mathbf{G}} n^{*}(\mathbf{G}) V_{\text {Hartree }}(\mathbf{G})+\Omega \sum_{\mathbf{G}} n^{*}(\mathbf{G})\left(\epsilon_{x c}(\mathbf{G})-V_{x c}(\mathbf{G})\right)+\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \tag{14}
\end{equation*}
$$

In the plane-wave representation the Kohn-Sham equation becomes

$$
\begin{equation*}
\sum_{\mathbf{G}^{\prime}}<\mathbf{k}+\mathbf{G}|H-\epsilon| \mathbf{k}+\mathbf{G}^{\prime}>\Psi\left(\mathbf{k}+\mathbf{G}^{\prime}\right)=0, \quad \text { or } \quad \sum_{\mathbf{G}^{\prime}}<\mathbf{k}+\mathbf{G}|H| \mathbf{k}+\mathbf{G}^{\prime}>\Psi\left(\mathbf{k}+\mathbf{G}^{\prime}\right)=\epsilon \Psi(\mathbf{k}+\mathbf{G}) \tag{15}
\end{equation*}
$$

The matrix elements of the hamiltonian are

$$
\begin{align*}
<\mathbf{k}+\mathbf{G}|H-\epsilon| \mathbf{k}+\mathbf{G}^{\prime}> & =\left(-\frac{\hbar^{2}}{2 m}(\mathbf{k}+\mathbf{G})^{2}-\epsilon\right) \delta_{\mathbf{G G}^{\prime}}+\sum_{\mu} S_{\mu}\left(\mathbf{G}-\mathbf{G}^{\prime}\right)\left(V_{\mu}\left(\mathbf{G}-\mathbf{G}^{\prime}\right)+\sum_{i} V_{\mu, i}\left(\mathbf{k}+\mathbf{G}, \mathbf{k}+\mathbf{G}^{\prime}\right)\right) \\
& +V_{\text {Hartree }}\left(\mathbf{G}-\mathbf{G}^{\prime}\right)+V_{x c}\left(\mathbf{G}-\mathbf{G}^{\prime}\right) . \tag{16}
\end{align*}
$$

Divergent Terms in the potential

The Hartree term, $V_{\text {Hartree }}(0)$, and local potential term, $\sum_{\mu} S_{\mu}(0) V_{\mu}(0)$, are separately divergent and must be treated in a special way. Let us consider their sum $\tilde{V}(\mathbf{r})=V_{\text {loc }}(\mathbf{r})+V_{\text {Hartree }}(\mathbf{r})$. Its $\mathbf{G}=0$ term is not divergent:

$$
\begin{equation*}
\widetilde{V}(\mathbf{G}=0)=\frac{1}{\Omega} \int d \mathbf{r}\left(\sum_{\mu} V_{\mu}\left(\mathbf{r}-\mathbf{d}_{\mu}\right)+\frac{1}{N} e^{2} \int \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime}\right)=\frac{1}{\Omega} \sum_{\mu} \int d \mathbf{r}\left(V_{\mu}(r)+\frac{Z_{\mu} e^{2}}{r}\right)=\frac{1}{\Omega} \sum_{\mu} \alpha_{\mu} \tag{17}
\end{equation*}
$$

where we used

$$
\begin{equation*}
V_{\mu}(r) \sim-\frac{Z_{\mu} e^{2}}{r} \quad \text { for large } r, \quad \frac{1}{N} \int n(\mathbf{r})=\sum_{\mu} Z_{\mu} \tag{18}
\end{equation*}
$$

The α_{μ} are parameters depending only on the pseudopotential.

Divergent Terms in the energy

The $\mathbf{G}=0$ terms of the ion-ion, Hartree, and local pseudopotential terms in the total energy are separately divergent and must be treated in a special way. Let us call $E_{d i v}$ the sum of all divergent terms.
First Step: split $E_{d i v}=E_{d i v}^{(1)}+E_{d i v}^{(2)}$, with

$$
\begin{align*}
E_{d i v}^{(1)} & =\int n(\mathbf{r}) \sum_{\mu} V_{\mu}\left(\mathbf{r}-\mathbf{d}_{\mu}\right) d \mathbf{r}+\frac{1}{N} e^{2} \int \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \tag{19}\\
E_{d i v}^{(2)} & =\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|}-\frac{1}{N} \frac{e^{2}}{2} \int \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \tag{20}
\end{align*}
$$

Using the previous definition of $\widetilde{V}(\mathbf{r})$, the first divergent term can be written as

$$
\begin{equation*}
E_{d i v}^{(1)}=\int n(\mathbf{r}) \widetilde{V}(\mathbf{r}) d \mathbf{r} \tag{21}
\end{equation*}
$$

The $\mathbf{G}=0$ term of $\tilde{V}(\mathbf{G})$ is not divergent and has been previously calculated:

$$
\begin{equation*}
\widetilde{V}(\mathbf{G}=0)=\frac{1}{\Omega} \sum_{\mu} \alpha_{\mu}, \quad n(\mathbf{G}=0)=\sum_{\mu} \frac{Z_{\mu}}{\Omega} \tag{22}
\end{equation*}
$$

We finally get for the $\mathbf{G}=0$ contribution what is usually called " αZ term":

$$
\begin{equation*}
E_{d i v}^{(1)}=\Omega \sum_{\mathbf{G} \neq 0} n^{*}(\mathbf{G}) \widetilde{V}(\mathbf{G})+\frac{1}{\Omega}\left(\sum_{\mu} Z_{\mu}\right)\left(\sum_{\mu} \alpha_{\mu}\right)=\Omega \sum_{\mathbf{G}} n^{*}(\mathbf{G}) \widetilde{V}_{l o c}(\mathbf{G})+2 \widetilde{E}_{H a r t r e e} \tag{23}
\end{equation*}
$$

where $\widetilde{V}_{l o c}$ is the local potential for $\mathbf{G} \neq 0$, contains the αZ term in $\mathbf{G}=0$ component, and

$$
\begin{equation*}
\widetilde{E}_{\text {Hartree }}=\frac{\Omega}{2} \sum_{\mathbf{G} \neq 0} n^{*}(\mathbf{G}) V_{\text {Hartree }}(\mathbf{G}) . \tag{24}
\end{equation*}
$$

Second step: write $E_{d i v}^{(2)}=E_{E w a l d}^{(1)}+E_{\text {Ewald }}^{(2)}-E_{\text {Hartree }}$, with

$$
\begin{equation*}
E_{\text {Ewald }}^{(1)}=\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \operatorname{erfc}\left(\sqrt{\eta}\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|\right), \quad E_{E w a l d}^{(2)}=\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \operatorname{erf}\left(\sqrt{\eta}\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|\right)-e^{2} \sqrt{\frac{\eta}{\pi}} \sum_{\mu} Z_{\mu}^{2} . \tag{25}
\end{equation*}
$$

This identity is verified for any value of η. The sum in $E_{E w a l d}^{(2)}$ includes the term with $\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}=0$ (note the missing prime), that is subtracted back in the second term of $E_{E w a l d}^{(2)}$ (note that $\operatorname{erf}(x) \rightarrow 2 x / \sqrt{\pi}$ for small x).

The first Ewald term $E_{\text {Ewald }}^{(1)}$ is rapidly convergent in real space for any reasonable values of η.
The sum in $E_{\text {Ewald }}^{(2)}$ can be written as the interaction energy between point charges $n_{c}(\mathbf{r})$ and the potential $V_{g}(\mathbf{r})$ produced by a gaussian distribution of charges:

$$
\begin{equation*}
E_{E w a l d}^{(2)}=\frac{1}{2} \int n_{c}(\mathbf{r}) V_{g}(\mathbf{r}) d \mathbf{r}-e^{2} \sqrt{\frac{\eta}{\pi}} \sum_{\mu} Z_{\mu}^{2}, \quad n_{c}(\mathbf{r})=\sum_{\mu} Z_{\mu} \delta\left(\mathbf{r}-\mathbf{d}_{\mu}\right), \quad V_{g}(\mathbf{r})=e^{2} \sum_{\mu, \mathbf{R}} \frac{Z_{\mu} \operatorname{erf}\left(\sqrt{\eta}\left|\mathbf{r}-\mathbf{d}_{\mu}-\mathbf{R}\right|\right)}{\left|\mathbf{r}-\mathbf{d}_{\mu}-\mathbf{R}\right|} \tag{26}
\end{equation*}
$$

In reciprocal space, by using the Fourier transform

$$
\begin{equation*}
\frac{1}{r^{\prime}} \operatorname{erf}\left(\sqrt{\eta} r^{\prime}\right)=\left(\frac{\eta}{\pi}\right)^{3 / 2} \int \frac{e^{-\eta r^{2}}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}=\int \frac{4 \pi e^{-G^{2} / 4 \eta}}{G^{2}} e^{i \mathbf{G} \cdot \mathbf{r}^{\prime}} d \mathbf{G} \tag{27}
\end{equation*}
$$

one obtains (forgetting for the moment the divergence of $V_{g}(\mathbf{G}=0)$):

$$
\begin{equation*}
E_{E w a l d}^{(2)}=\frac{\Omega}{2} \sum_{\mathbf{G}} n_{c}^{*}(\mathbf{G}) V_{g}(\mathbf{G})-e^{2} \sqrt{\frac{\eta}{\pi}} \sum_{\mu} Z_{\mu}^{2}, \quad n_{c}(\mathbf{G})=\frac{1}{\Omega} \sum_{\mu} Z_{\mu} e^{i \mathbf{G} \cdot \mathbf{d}_{\mu}}, \quad V_{g}(\mathbf{G})=\frac{4 \pi e^{2}}{\Omega} \sum_{\mu} Z_{\mu} e^{i \mathbf{G} \cdot \mathbf{d}_{\mu}} \frac{e^{-G^{2} / 4 \eta}}{G^{2}} \tag{28}
\end{equation*}
$$

The $\mathbf{G}=0$ contribution to $E_{\text {Ewald }}^{(2)}-E_{\text {Hartree }}$:

$$
\begin{equation*}
E_{0}=\frac{\Omega}{2}\left(n_{c}(0) V_{g}(0)-n(0) V_{\text {Hartree }}(0)\right) \tag{29}
\end{equation*}
$$

is no longer divergent, because $n(0)=n_{c}(0)=\sum_{\mu} Z_{\mu} / \Omega$ due to the neutrality of the system:

$$
\begin{align*}
\left(V_{g}-V_{\text {Hartree }}\right)(\mathbf{G}=0) & =\frac{e^{2}}{N \Omega} \int\left(\sum_{\mu, \mathbf{R}} Z_{\mu} \frac{\left.\operatorname{erf}\left(\sqrt{\eta} \mid \mathbf{r}-\mathbf{d}_{\mu}-\mathbf{R}\right) \mid\right)}{\left.\mid \mathbf{r}-\mathbf{d}_{\mu}-\mathbf{R}\right) \mid}-\int \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime}\right) d \mathbf{r} \\
& =\frac{e^{2}}{\Omega}\left(\sum_{\mu} Z_{\mu}\right) \int \frac{\operatorname{erf}(\sqrt{\eta} r)-1}{r} d \mathbf{r}=\frac{e^{2}}{\Omega}\left(\sum_{\mu} Z_{\mu}\right) \frac{\pi}{\eta} \tag{30}
\end{align*}
$$

The integral appearing in the last expression can be found in tables:

$$
\begin{equation*}
\int \frac{\operatorname{erf}(\sqrt{\eta} r)-1}{r} d \mathbf{r}=4 \pi \int(\operatorname{erf}(\sqrt{\eta} r)-1) r d r=4 \pi \frac{1}{4 \eta} \tag{31}
\end{equation*}
$$

Putting all pieces together, one obtains for $E_{d i v}^{(2)}$:

$$
\begin{align*}
E_{\text {div }}^{(2)}=-\widetilde{E}_{\text {hartree }}+E_{\text {Ewald }}= & -\frac{\Omega}{2} \sum_{\mathbf{G} \neq 0} n^{*}(\mathbf{G}) V_{\text {Hartree }}(\mathbf{G})+\frac{4 \pi}{\Omega} \frac{e^{2}}{2} \sum_{\mathbf{G} \neq 0}\left|\sum_{\mu} Z_{\mu} e^{i \mathbf{G d} \mathbf{d}_{\mu}}\right|^{2} \frac{e^{-G^{2} / 4 \eta}}{G^{2}} \\
& +\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \operatorname{erfc}\left(\sqrt{\eta}\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|\right)-e^{2} \sqrt{\frac{\eta}{\pi}} \sum_{\mu} Z_{\mu}^{2}-\frac{4 \pi}{\Omega} \frac{e^{2}}{2} \frac{1}{4 \eta}\left(\sum_{\mu} Z_{\mu}\right)^{2} \tag{32}
\end{align*}
$$

and for the total energy:

$$
\begin{align*}
\frac{E_{t o t}}{N}= & \frac{1}{N} \frac{\hbar^{2}}{2 m} \sum_{\mathbf{k}, v} \sum_{\mathbf{G}}\left|\Psi_{v}(\mathbf{k}+\mathbf{G})\right|^{2}(\mathbf{k}+\mathbf{G})^{2}+\frac{1}{N} \sum_{\mathbf{k}, v} \sum_{\mu, i} \sum_{\mathbf{G}, \mathbf{G}^{\prime}} S_{\mu}\left(\mathbf{G}-\mathbf{G}^{\prime}\right) \Psi_{v}^{*}(\mathbf{k}+\mathbf{G}) \Psi_{v}\left(\mathbf{k}+\mathbf{G}^{\prime}\right) V_{\mu, i}\left(\mathbf{k}+\mathbf{G}, \mathbf{k}+\mathbf{G}^{\prime}\right) \\
& +\Omega \sum_{\mathbf{G}} n^{*}(\mathbf{G}) \epsilon_{x c}(\mathbf{G})+\Omega \sum_{\mathbf{G}} n^{*}(\mathbf{G}) \widetilde{V}_{l o c}(\mathbf{G})+\widetilde{E}_{\text {Hartree }}+E_{\text {Ewald }} . \tag{33}
\end{align*}
$$

One can use the sum of the eigenvalues to calculate the total energy: the kinetic, non local, and local (including the αZ term) contributions disappear and the expression of the total energy becomes:

$$
\begin{equation*}
\frac{E_{t o t}}{N}=\frac{1}{N} \sum_{\mathbf{k}, v} \epsilon_{\mathbf{k}, v}+\Omega \sum_{\mathbf{G}} n^{*}(\mathbf{G})\left(\epsilon_{x c}(\mathbf{G})-V_{x c}(\mathbf{G})\right)-\tilde{E}_{\text {Hartree }}+E_{E w a l d} . \tag{34}
\end{equation*}
$$

Calculation of energy in CP

Let us define n_{g} as the sum of gaussian charges centered at atomic sites:

$$
\begin{equation*}
n_{g}(\mathbf{r})=\sum_{\mu} Z_{\mu}\left(\frac{\eta}{\pi}\right)^{3 / 2} e^{-\eta\left(\mathbf{r}-\mathbf{d}_{\mu}\right)^{2}} \tag{35}
\end{equation*}
$$

The divergent terms $E_{d i v}$ of the energy can be rewritten as $E_{d i v}=E_{d i v}^{(1)}+E_{d i v}^{(2)}$, with

$$
\begin{gather*}
E_{d i v}^{(1)}=\int n(\mathbf{r}) \sum_{\mu} V_{\mu}\left(\mathbf{r}-\mathbf{d}_{\mu}\right) d \mathbf{r}-\frac{1}{N} e^{2} \int \frac{n(\mathbf{r}) n_{g}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \tag{36}\\
E_{d i v}^{(2)}=\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|}+\frac{1}{N} \frac{e^{2}}{2} \int \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\frac{1}{N} e^{2} \int \frac{n(\mathbf{r}) n_{g}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \tag{37}
\end{gather*}
$$

$E_{d i v}^{(1)}$ can be rewritten as

$$
\begin{equation*}
E_{d i v}^{(1)}=\int n(\mathbf{r}) V_{l o c+g}(\mathbf{r}) d \mathbf{r}, \quad V_{l o c+g}(\mathbf{r})=\left(\sum_{\mu} V_{\mu}\left(\mathbf{r}-\mathbf{d}_{\mu}\right)+V_{g}(\mathbf{r})\right) \tag{38}
\end{equation*}
$$

where $V_{g}(\mathbf{r})$ is the potential generated by the gaussians. The singularity at $\mathbf{G}=0$ disappears :

$$
\begin{equation*}
V_{l o c+g}(\mathbf{G}=0)=\frac{1}{\Omega} \sum_{\mu} \int d \mathbf{r}\left(V_{\mu}(r)+\frac{Z_{\mu} e^{2} \operatorname{erf}(\sqrt{\eta} r)}{r}\right) \equiv \frac{1}{\Omega} \sum_{\mu} \alpha_{\mu}^{\prime} \tag{39}
\end{equation*}
$$

Note that this term is similar to, but not equal to, the αZ term. $E_{d i v}^{(1)}$ can be rewritten as:

$$
\begin{equation*}
E_{d i v}^{(1)}=\frac{1}{\Omega}\left(\sum_{\mu} Z_{\mu}\right)\left(\sum_{\mu} \alpha_{\mu}^{\prime}\right)+\Omega \sum_{\mathbf{G} \neq 0} n^{*}(\mathbf{G}) V_{l o c+g}(\mathbf{G}) . \tag{40}
\end{equation*}
$$

$E_{d i v}^{(2)}$ can be rewritten as $E_{d i v}^{(2)}=E_{E w a l d}+E_{H+g}$, where $E_{\text {Ewald }}$ is the well-known Ewald sum,

$$
\begin{equation*}
E_{E w a l d}=\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|}-\frac{1}{N} \frac{e^{2}}{2} \int \frac{n_{g}(\mathbf{r}) n_{g}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \tag{41}
\end{equation*}
$$

while E_{H+g} is the electrostatic energy of a system of electrons and ions with a gaussian charge distribution:

$$
\begin{equation*}
E_{H+g}=\frac{1}{N} \frac{e^{2}}{2} \int \frac{\left(n(\mathbf{r})+n_{g}(\mathbf{r})\right)\left(n\left(\mathbf{r}^{\prime}\right)+n_{g}\left(\mathbf{r}^{\prime}\right)\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \tag{42}
\end{equation*}
$$

Both terms are regular at $\mathbf{G}=0$ because they are the electrostatic energy of neutral systems. E_{H+g} can be directly calculated:

$$
\begin{equation*}
E_{H+g}=\Omega \sum_{\mathbf{G} \neq 0}\left(n^{*}(\mathbf{G})+n_{g}^{*}(\mathbf{G})\right) V_{H+g}(\mathbf{G}), \quad V_{H+g}(\mathbf{G})=\frac{4 \pi e^{2}}{G^{2}}\left(n(\mathbf{G})+n_{g}(\mathbf{G})\right) . \tag{43}
\end{equation*}
$$

$E_{\text {Ewald }}$ can be easily computed using the same technique used before:

$$
\begin{equation*}
E_{E w a l d}=E_{E w a l d}^{(1)}+E_{E w a l d}^{(2)} \tag{44}
\end{equation*}
$$

where (note the sum over all vectors including $\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}=0$):

$$
\begin{equation*}
E_{E w a l d}^{(1)}=\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \operatorname{erf}\left(\sqrt{\zeta}\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|\right)-\frac{1}{N} \frac{e^{2}}{2} \int \frac{n_{g}(\mathbf{r}) n_{g}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \tag{45}
\end{equation*}
$$

and (note the self-interaction term compensating the $\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}=0$ contribution of the former term):

$$
\begin{equation*}
E_{E w a l d}^{(2)}=\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}}^{\prime} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \operatorname{erfc}\left(\sqrt{\zeta}\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|\right)-e^{2} \sqrt{\frac{\zeta}{\pi}} \sum_{\mu} Z_{\mu}^{2} \tag{46}
\end{equation*}
$$

for an arbitrary value of ζ. $E_{\text {Ewald }}^{(1)}$ can be made to vanish, because both terms appearing in it can be written in reciprocal space as an Ewald sum. Leaving apart the $\mathbf{G}=0$ contribution,

$$
\begin{equation*}
\frac{1}{N} \frac{e^{2}}{2} \int \frac{n_{g}(\mathbf{r}) n_{g}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}=\frac{\Omega}{2} \sum_{\mathbf{G} \neq 0} n_{g}^{*}(\mathbf{G}) V_{g}(\mathbf{G})=\frac{4 \pi}{\Omega} \frac{e^{2}}{2} \sum_{\mathbf{G} \neq 0}\left|\sum_{\mu} Z_{\mu} e^{i \mathbf{G} \cdot \mathbf{d}_{\mu}}\right|^{2} \frac{e^{-G^{2} / 2 \eta}}{G^{2}} \tag{47}
\end{equation*}
$$

This expression comes from the Fourier transform of $n_{g}(\mathbf{r})$ and $V_{g}(\mathbf{r})$:

$$
\begin{equation*}
n_{g}(\mathbf{G})=\frac{1}{\Omega} \sum_{\mu} Z_{\mu} e^{i \mathbf{G} \cdot \mathbf{d}_{\mu}} e^{-G^{2} / 4 \eta}, \quad V_{g}(\mathbf{G})=\frac{4 \pi e^{2} n_{g}(\mathbf{G})}{G^{2}} \tag{48}
\end{equation*}
$$

By setting $2 \zeta=\eta$, one finds exactly the reciprocal space expression for the first term:

$$
\begin{equation*}
\frac{e^{2}}{2} \sum_{\mu, \nu, \mathbf{R}} \frac{Z_{\mu} Z_{\nu}}{\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|} \operatorname{erf}\left(\sqrt{\zeta}\left|\mathbf{d}_{\mu}-\mathbf{d}_{\nu}-\mathbf{R}\right|\right)=\frac{4 \pi}{\Omega} \frac{e^{2}}{2} \sum_{\mathbf{G} \neq 0}\left|\sum_{\mu} Z_{\mu} e^{i \mathbf{G} \cdot \mathbf{d}_{\mu}}\right|^{2} \frac{e^{-G^{2} / 4 \zeta}}{G^{2}} \tag{49}
\end{equation*}
$$

$E_{\text {Ewald }}^{(2)}$ is a rapidly convergent sum in real space, plus a term coming from the self-interaction of gaussians.
Miscellaneous
When a set of special points $\left\{\mathbf{k}_{i}\right\}$, with weights $w_{i}, \sum_{i} w_{i}=1$, is used to sample the Brillouin Zone, one has:

$$
\begin{equation*}
\frac{1}{N} \sum_{\mathbf{k}} f(\mathbf{k}) \Longrightarrow \sum_{i} w_{i} f\left(\mathbf{k}_{i}\right) \tag{50}
\end{equation*}
$$

The $\psi(\mathbf{r})$ as defined above are vanishingly small in order to be normalized. What is actually calculated, and used in the Fast Fourier Transform algorithm, is $\sqrt{N} \psi(\mathbf{r}): \Psi(\mathbf{k}+\mathbf{G}) \stackrel{F F T}{\longleftrightarrow} \sqrt{N} \psi(\mathbf{r})$. This ensures the correct normalization of the charge density.

