<div dir="ltr">Dear Lorenzo!<div>Can you please clarify this statement: "s<span style="font-size:12.8px">cattering states are not normalizable: they always diverge". Are the scattering states differ from the unbound states (i.e. plane waves), which are also not </span><span style="font-size:12.8px">normalizable, but at least they don't diverge? The scattering states in the UPF files have a value of ~10^8 at the end of the radial grid. What's the physics behind the states with psi(r)->infinity for r->infinity?</span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">With kind regards,</span></div><div><span style="font-size:12.8px">Anton.</span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px"><br></span></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, May 13, 2016 at 4:34 PM, Lorenzo Paulatto <span dir="ltr"><<a href="mailto:lorenzo.paulatto@impmc.upmc.fr" target="_blank">lorenzo.paulatto@impmc.upmc.fr</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear Ilia,<br>
when constructing a pseudopotential with multiple projectros, be it PAW, US or<br>
normconserving, you build the second projector over a scattering state (which<br>
we usually just call wavefunction, for simplicity) of the isolated atom<br>
hamiltonian. A scattering state solves the usual Sschroedinger equation:<br>
H\psi = e \psi<br>
for an energy e which is not an eigenstate of H.<br>
<br>
Scattering states are not normalizable: they always diverge. The only special<br>
thing about PAW, is that these states are solved in the UPF files, while for US<br>
and NC they are not.<br>
<br>
In PAW we rely on the fact the pseudo and all-electron wavefunctions/<br>
scattering state are identical after a certain radius, hence instead of<br>
integrating up to infinity we stop at the cutoff radius.<br>
<br>
I see no solution for your problem, I' afraid you'll have to review your<br>
definition of the Dij matrix.<br>
<br>
kind regards<br>
<span class=""><br>
<br>
On Friday, 13 May 2016 14:49:10 CEST Ilia Sivkov wrote:<br>
> Dear All,<br>
><br>
> Recently I started to dig a code of Quantum Espresso to compare it with<br>
> the developed in our group and found that many PAW UPF files have<br>
> divergence in AE and PS radial wave functions. I found that it appears<br>
> mostly in 4th P-orbital. Here I post two plots with these AE radial<br>
> functions for V and Cu<br>
><br>
</span><span class="">> Looking at the other files I found such problem in each of them. It<br>
> seems that all PAW UPF files have such divergence.<br>
><br>
> Interesting point, that Quantum Espresso gives no bad values in density<br>
> (variable "rho_lm") and potential (hartree, xc, total), but variable<br>
> "pfunc" has such divergense.<br>
><br>
> Due to these divergences our developing code gives bad values in Dij<br>
> matrix, because it is calculated in a little bit different way.<br>
><br>
> I would be very appreciated if you could help me to explain such strange<br>
> behavior.<br>
><br>
> With best regards,<br>
> Ilia Sivkov<br>
<br>
<br>
--<br>
</span>Dr. Lorenzo Paulatto<br>
IdR @ IMPMC -- CNRS & Université Paris 6<br>
<a href="tel:%2B33%20%280%291%2044%20275%20084" value="+33144275084">+33 (0)1 44 275 084</a> / skype: paulatz<br>
<a href="http://www.impmc.upmc.fr/~paulatto/" rel="noreferrer" target="_blank">http://www.impmc.upmc.fr/~paulatto/</a><br>
23-24/4é16 Boîte courrier 115,<br>
4 place Jussieu 75252 Paris Cédex 05<br>
<br>
_______________________________________________<br>
Q-e-developers mailing list<br>
<a href="mailto:Q-e-developers@qe-forge.org">Q-e-developers@qe-forge.org</a><br>
<a href="http://qe-forge.org/mailman/listinfo/q-e-developers" rel="noreferrer" target="_blank">http://qe-forge.org/mailman/listinfo/q-e-developers</a><br>
</blockquote></div><br></div>