! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! !------------------------------------------------------------------------------! MODULE cell_base !------------------------------------------------------------------------------! USE kinds, ONLY : DP USE constants, ONLY : pi, bohr_radius_angs USE io_global, ONLY : stdout ! IMPLICIT NONE SAVE ! ! ibrav: index of the bravais lattice (see latgen.f90) INTEGER :: ibrav ! celldm: old-style parameters of the simulation cell (se latgen.f90) REAL(DP) :: celldm(6) = (/ 0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP /) ! traditional crystallographic cell parameters (alpha=cosbc and so on) REAL(DP) :: a, b, c, cosab, cosac, cosbc ! alat: lattice parameter - often used to scale quantities, or ! in combination to other parameters/constants to define new units REAL(DP) :: alat = 0.0_DP ! omega: volume of the simulation cell REAl(DP) :: omega = 0.0_DP ! tpiba: 2 PI/alat, tpiba2=tpiba^2 REAL(DP) :: tpiba = 0.0_DP, tpiba2 = 0.0_DP ! direct and reciprocal lattice primitive vectors ! at(:,i) are the lattice vectors of the simulation cell, a_i, ! in alat units: a_i(:) = at(:,i)/alat ! bg(:,i) are the reciprocal lattice vectors, b_i, ! in tpiba=2pi/alat units: b_i(:) = bg(:,i)/tpiba REAL(DP) :: at(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) REAL(DP) :: bg(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) ! ! ------------------------------------------------------------------------- ! ... periodicity box ! ... In the matrix "a" every row is the vector of each side of ! ... the cell in the real space TYPE boxdimensions REAL(DP) :: a(3,3) ! direct lattice generators REAL(DP) :: m1(3,3) ! reciprocal lattice generators REAL(DP) :: omega ! cell volume = determinant of a REAL(DP) :: g(3,3) ! metric tensor REAL(DP) :: gvel(3,3) ! metric velocity REAL(DP) :: pail(3,3) ! stress tensor ( scaled coor. ) REAL(DP) :: paiu(3,3) ! stress tensor ( cartesian coor. ) REAL(DP) :: hmat(3,3) ! cell parameters ( transpose of "a" ) REAL(DP) :: hvel(3,3) ! cell velocity REAL(DP) :: hinv(3,3) REAL(DP) :: deth INTEGER :: perd(3) END TYPE boxdimensions ! The following relations should always be kept valid: ! h = at*alat; ainv = h^(-1); ht=transpose(h) REAL(DP) :: h(3,3) = 0.0_DP ! simulation cell at time t REAL(DP) :: ainv(3,3) = 0.0_DP REAL(DP) :: hold(3,3) = 0.0_DP ! simulation cell at time t-delt REAL(DP) :: hnew(3,3) = 0.0_DP ! simulation cell at time t+delt REAL(DP) :: velh(3,3) = 0.0_DP ! simulation cell velocity REAL(DP) :: deth = 0.0_DP ! determinant of h ( cell volume ) INTEGER :: iforceh(3,3) = 1 ! if iforceh( i, j ) = 0 then h( i, j ) ! is not allowed to move LOGICAL :: fix_volume = .FALSE. ! True if cell volume is kept fixed ! RICHARD VARIABLE ADDED FOR 2DSHAPE LOGICAL :: fix_area = .FALSE. ! True for cell_dofree='2Dshape' to keep area constant ! RICHARD REAL(DP) :: wmass = 0.0_DP ! cell fictitious mass REAL(DP) :: press = 0.0_DP ! external pressure REAL(DP) :: frich = 0.0_DP ! friction parameter for cell damped dynamics REAL(DP) :: greash = 1.0_DP ! greas parameter for damped dynamics LOGICAL :: tcell_base_init = .FALSE. INTERFACE cell_init MODULE PROCEDURE cell_init_ht, cell_init_a END INTERFACE INTERFACE pbcs MODULE PROCEDURE pbcs_components, pbcs_vectors END INTERFACE INTERFACE s_to_r MODULE PROCEDURE s_to_r1, s_to_r1b, s_to_r3 END INTERFACE INTERFACE r_to_s MODULE PROCEDURE r_to_s1, r_to_s1b, r_to_s3 END INTERFACE !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! ! SUBROUTINE cell_base_init( ibrav_, celldm_, a_, b_, c_, cosab_, cosac_, & cosbc_, trd_ht, rd_ht, cell_units ) ! ! ... initialize cell_base module variables, set up crystal lattice ! IMPLICIT NONE INTEGER, INTENT(IN) :: ibrav_ REAL(DP), INTENT(IN) :: celldm_ (6) LOGICAL, INTENT(IN) :: trd_ht REAL(DP), INTENT(IN) :: rd_ht (3,3) CHARACTER(LEN=*), INTENT(IN) :: cell_units REAL(DP), INTENT(IN) :: a_ , b_ , c_ , cosab_, cosac_, cosbc_ REAL(DP) :: units ! IF ( ibrav_ == 0 .and. .not. trd_ht ) THEN CALL errore('cell_base_init', 'ibrav=0: must read cell parameters', 1) ELSE IF ( ibrav /= 0 .and. trd_ht ) THEN CALL errore('cell_base_init', 'redundant data for cell parameters', 2) END IF ! ibrav = ibrav_ celldm = celldm_ a = a_ ; b = b_ ; c = c_ ; cosab = cosab_ ; cosac = cosac_ ; cosbc = cosbc_ ! IF ( trd_ht ) THEN ! ! ... crystal lattice vectors read from input: find units ! SELECT CASE ( TRIM( cell_units ) ) CASE ( 'bohr' ) units = 1.0_DP CASE ( 'angstrom' ) units = 1.0_DP / bohr_radius_angs CASE DEFAULT IF( celldm( 1 ) /= 0.0_DP ) THEN units = celldm( 1 ) ELSE IF ( a /= 0.0_dp ) THEN units = a / bohr_radius_angs ELSE units = 1.0_DP END IF END SELECT ! ! ... Beware the transpose operation between matrices ht and at! ! at = TRANSPOSE( rd_ht ) * units ! ! ... at is in atomic units: find alat, bring at to alat units, find omega ! IF( celldm( 1 ) /= 0.0_DP ) THEN alat = celldm( 1 ) ELSE IF ( a /= 0.0_dp ) THEN alat = a / bohr_radius_angs ELSE alat = SQRT ( at(1,1)**2+at(2,1)**2+at(3,1)**2 ) END IF at(:,:) = at(:,:) / alat CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) ! ELSE ! ... crystal lattice via celldm or crystallographica parameters ! IF ( celldm(1) == 0.D0 .and. a /= 0.D0 ) THEN ! celldm(1) = a / bohr_radius_angs celldm(2) = b / a celldm(3) = c / a ! IF ( ibrav == 14 ) THEN ! ! ... triclinic lattice ! celldm(4) = cosbc celldm(5) = cosac celldm(6) = cosab ! ELSE IF ( ibrav ==-12 ) THEN ! ! ... monoclinic P lattice, unique axis b ! celldm(5) = cosac ! ELSE ! ! ... trigonal and monoclinic lattices, unique axis c ! celldm(4) = cosab ! ENDIF ! ELSE IF ( celldm(1) /= 0.D0 .and. a /= 0.D0 ) THEN ! CALL errore( 'input', 'do not specify both celldm and a,b,c!', 1 ) ! END IF ! ! ... generate at (in atomic units) from ibrav and celldm ! CALL latgen( ibrav, celldm, at(1,1), at(1,2), at(1,3), omega ) ! ! ... define lattice constants alat, divide at by alat ! alat = celldm(1) at(:,:) = at(:,:) / alat ! END IF ! ! ... Generate the reciprocal lattice vectors ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! tpiba = 2.0_DP * pi / alat tpiba2 = tpiba * tpiba RETURN ! END SUBROUTINE cell_base_init !------------------------------------------------------------------------------! ! ... set box ! ... box%m1(i,1) == b1(i) COLUMN are B vectors ! ... box%a(1,i) == a1(i) ROW are A vector ! ... box%omega == volume ! ... box%g(i,j) == metric tensor G !------------------------------------------------------------------------------! SUBROUTINE cell_init_ht( what, box, hval ) TYPE (boxdimensions) :: box REAL(DP), INTENT(IN) :: hval(3,3) CHARACTER, INTENT(IN) :: what IF( what == 't' .OR. what == 'T' ) THEN ! hval == ht box%a = hval box%hmat = TRANSPOSE( hval ) ELSE ! hval == hmat box%hmat = hval box%a = TRANSPOSE( hval ) END IF CALL gethinv( box ) box%g = MATMUL( box%a(:,:), box%hmat(:,:) ) box%gvel = 0.0_DP box%hvel = 0.0_DP box%pail = 0.0_DP box%paiu = 0.0_DP RETURN END SUBROUTINE cell_init_ht !------------------------------------------------------------------------------! SUBROUTINE cell_init_a( alat, at, box ) TYPE (boxdimensions) :: box REAL(DP), INTENT(IN) :: alat, at(3,3) INTEGER :: i DO i=1,3 ! this is HT: the rows are the lattice vectors box%a(1,i) = at(i,1)*alat box%a(2,i) = at(i,2)*alat box%a(3,i) = at(i,3)*alat ! this is H : the column are the lattice vectors box%hmat(i,1) = at(i,1)*alat box%hmat(i,2) = at(i,2)*alat box%hmat(i,3) = at(i,3)*alat END DO box%pail = 0.0_DP box%paiu = 0.0_DP box%hvel = 0.0_DP CALL gethinv(box) box%g = MATMUL( box%a(:,:), box%hmat(:,:) ) box%gvel = 0.0_DP RETURN END SUBROUTINE cell_init_a !------------------------------------------------------------------------------! SUBROUTINE r_to_s1 (r,s,box) REAL(DP), intent(out) :: S(3) REAL(DP), intent(in) :: R(3) type (boxdimensions), intent(in) :: box integer i,j DO I=1,3 S(I) = 0.0_DP DO J=1,3 S(I) = S(I) + R(J)*box%m1(J,I) END DO END DO RETURN END SUBROUTINE r_to_s1 !------------------------------------------------------------------------------! SUBROUTINE r_to_s3 ( r, s, na, nsp, hinv ) REAL(DP), intent(out) :: S(:,:) INTEGER, intent(in) :: na(:), nsp REAL(DP), intent(in) :: R(:,:) REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 ) integer :: i, j, ia, is, isa isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO I=1,3 S(I,isa) = 0.0_DP DO J=1,3 S(I,isa) = S(I,isa) + R(J,isa)*hinv(i,j) END DO END DO END DO END DO RETURN END SUBROUTINE r_to_s3 !------------------------------------------------------------------------------! SUBROUTINE r_to_s1b ( r, s, hinv ) REAL(DP), intent(out) :: S(:) REAL(DP), intent(in) :: R(:) REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 ) integer :: i, j DO I=1,3 S(I) = 0.0_DP DO J=1,3 S(I) = S(I) + R(J)*hinv(i,j) END DO END DO RETURN END SUBROUTINE r_to_s1b !------------------------------------------------------------------------------! SUBROUTINE s_to_r1 (S,R,box) REAL(DP), intent(in) :: S(3) REAL(DP), intent(out) :: R(3) type (boxdimensions), intent(in) :: box integer i,j DO I=1,3 R(I) = 0.0_DP DO J=1,3 R(I) = R(I) + S(J)*box%a(J,I) END DO END DO RETURN END SUBROUTINE s_to_r1 !------------------------------------------------------------------------------! SUBROUTINE s_to_r1b (S,R,h) REAL(DP), intent(in) :: S(3) REAL(DP), intent(out) :: R(3) REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a ) integer i,j DO I=1,3 R(I) = 0.0_DP DO J=1,3 R(I) = R(I) + S(J)*h(I,j) END DO END DO RETURN END SUBROUTINE s_to_r1b !------------------------------------------------------------------------------! SUBROUTINE s_to_r3 ( S, R, na, nsp, h ) REAL(DP), intent(in) :: S(:,:) INTEGER, intent(in) :: na(:), nsp REAL(DP), intent(out) :: R(:,:) REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a ) integer :: i, j, ia, is, isa isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO I = 1, 3 R(I,isa) = 0.0_DP DO J = 1, 3 R(I,isa) = R(I,isa) + S(J,isa) * h(I,j) END DO END DO END DO END DO RETURN END SUBROUTINE s_to_r3 ! !------------------------------------------------------------------------------! ! SUBROUTINE gethinv(box) IMPLICIT NONE TYPE (boxdimensions), INTENT (INOUT) :: box ! CALL invmat( 3, box%a, box%m1, box%omega ) box%deth = box%omega box%hinv = TRANSPOSE( box%m1 ) ! RETURN END SUBROUTINE gethinv FUNCTION get_volume( hmat ) IMPLICIT NONE REAL(DP) :: get_volume REAL(DP) :: hmat( 3, 3 ) get_volume = hmat(1,1)*(hmat(2,2)*hmat(3,3)-hmat(2,3)*hmat(3,2)) + & hmat(1,2)*(hmat(2,3)*hmat(3,1)-hmat(2,1)*hmat(3,3)) + & hmat(1,3)*(hmat(2,1)*hmat(3,2)-hmat(2,2)*hmat(3,1)) RETURN END FUNCTION get_volume ! !------------------------------------------------------------------------------! ! FUNCTION pbc(rin,box,nl) RESULT (rout) IMPLICIT NONE TYPE (boxdimensions) :: box REAL (DP) :: rin(3) REAL (DP) :: rout(3), s(3) INTEGER, OPTIONAL :: nl(3) s = matmul(box%hinv(:,:),rin) s = s - box%perd*nint(s) rout = matmul(box%hmat(:,:),s) IF (present(nl)) THEN s = REAL( nl, DP ) rout = rout + matmul(box%hmat(:,:),s) END IF END FUNCTION pbc ! !------------------------------------------------------------------------------! ! FUNCTION saw(emaxpos,eopreg,x) RESULT (sawout) IMPLICIT NONE REAL(DP) :: emaxpos,eopreg,x REAL(DP) :: y, sawout, z z = x - emaxpos y = z - floor(z) if (y.le.eopreg) then sawout = (0.5_DP - y/eopreg) * (1._DP-eopreg) else ! ! I would use: sawout = y - 0.5_DP * ( 1.0_DP + eopreg ) ! sawout = (-0.5_DP + (y-eopreg)/(1._DP-eopreg)) * (1._DP-eopreg) end if END FUNCTION saw ! !------------------------------------------------------------------------------! ! SUBROUTINE get_cell_param(box,cell,ang) IMPLICIT NONE TYPE(boxdimensions), INTENT(in) :: box REAL(DP), INTENT(out), DIMENSION(3) :: cell REAL(DP), INTENT(out), DIMENSION(3), OPTIONAL :: ang ! This code gets the cell parameters given the h-matrix: ! a cell(1)=sqrt(box%hmat(1,1)*box%hmat(1,1)+box%hmat(2,1)*box%hmat(2,1) & +box%hmat(3,1)*box%hmat(3,1)) ! b cell(2)=sqrt(box%hmat(1,2)*box%hmat(1,2)+box%hmat(2,2)*box%hmat(2,2) & +box%hmat(3,2)*box%hmat(3,2)) ! c cell(3)=sqrt(box%hmat(1,3)*box%hmat(1,3)+box%hmat(2,3)*box%hmat(2,3) & +box%hmat(3,3)*box%hmat(3,3)) IF (PRESENT(ang)) THEN ! gamma ang(1)=acos((box%hmat(1,1)*box%hmat(1,2)+ & box%hmat(2,1)*box%hmat(2,2) & +box%hmat(3,1)*box%hmat(3,2))/(cell(1)*cell(2))) ! beta ang(2)=acos((box%hmat(1,1)*box%hmat(1,3)+ & box%hmat(2,1)*box%hmat(2,3) & +box%hmat(3,1)*box%hmat(3,3))/(cell(1)*cell(3))) ! alpha ang(3)=acos((box%hmat(1,2)*box%hmat(1,3)+ & box%hmat(2,2)*box%hmat(2,3) & +box%hmat(3,2)*box%hmat(3,3))/(cell(2)*cell(3))) ! ang=ang*180.0_DP/pi ENDIF END SUBROUTINE get_cell_param !------------------------------------------------------------------------------! SUBROUTINE pbcs_components(x1, y1, z1, x2, y2, z2, m) ! ... This subroutine compute the periodic boundary conditions in the scaled ! ... variables system USE kinds INTEGER, INTENT(IN) :: M REAL(DP), INTENT(IN) :: X1,Y1,Z1 REAL(DP), INTENT(OUT) :: X2,Y2,Z2 REAL(DP) MIC MIC = REAL( M, DP ) X2 = X1 - DNINT(X1/MIC)*MIC Y2 = Y1 - DNINT(Y1/MIC)*MIC Z2 = Z1 - DNINT(Z1/MIC)*MIC RETURN END SUBROUTINE pbcs_components !------------------------------------------------------------------------------! SUBROUTINE pbcs_vectors(v, w, m) ! ... This subroutine compute the periodic boundary conditions in the scaled ! ... variables system USE kinds INTEGER, INTENT(IN) :: m REAL(DP), INTENT(IN) :: v(3) REAL(DP), INTENT(OUT) :: w(3) REAL(DP) :: MIC MIC = REAL( M, DP ) w(1) = v(1) - DNINT(v(1)/MIC)*MIC w(2) = v(2) - DNINT(v(2)/MIC)*MIC w(3) = v(3) - DNINT(v(3)/MIC)*MIC RETURN END SUBROUTINE pbcs_vectors !------------------------------------------------------------------------------! SUBROUTINE cell_dyn_init( trd_ht, rd_ht, wc_ , total_ions_mass , press_ , & frich_ , greash_ , cell_dofree ) USE constants, ONLY: au_gpa, amu_au USE io_global, ONLY: stdout IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: cell_dofree LOGICAL, INTENT(IN) :: trd_ht REAL(DP), INTENT(IN) :: rd_ht (3,3) REAL(DP), INTENT(IN) :: wc_ , frich_ , greash_ , total_ions_mass REAL(DP), INTENT(IN) :: press_ ! external pressure from input ! ( in KBar = 0.1 GPa ) INTEGER :: i,j ! press = press_ / 10.0_DP ! convert press in KBar to GPa press = press / au_gpa ! convert to AU ! frich = frich_ ! for the time being this is set elsewhere greash = greash_ WRITE( stdout, 105 ) WRITE( stdout, 110 ) press_ 105 format(/,3X,'Simulation Cell Parameters (from input)') 110 format( 3X,'external pressure = ',f15.2,' [KBar]') wmass = wc_ IF( wmass == 0.0_DP ) THEN wmass = 3.0_DP / (4.0_DP * pi**2 ) * total_ions_mass wmass = wmass * AMU_AU WRITE( stdout,130) wmass ELSE WRITE( stdout,120) wmass END IF 120 format(3X,'wmass (read from input) = ',f15.2,' [AU]') 130 format(3X,'wmass (calculated) = ',f15.2,' [AU]') IF( wmass <= 0.0_DP ) & CALL errore(' cell_dyn_init',' wmass out of range ',0) IF ( trd_ht ) THEN ! WRITE( stdout, 210 ) WRITE( stdout, 220 ) ( rd_ht( 1, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( rd_ht( 2, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( rd_ht( 3, j ), j = 1, 3 ) ! 210 format(3X,'initial cell from CELL_PARAMETERS card') 220 format(3X,3F14.8) ! END IF ! ainv(1,:) = bg(:,1)/alat ainv(2,:) = bg(:,2)/alat ainv(3,:) = bg(:,3)/alat ! CALL init_dofree ( cell_dofree ) ! tcell_base_init = .TRUE. WRITE( stdout, 300 ) ibrav WRITE( stdout, 305 ) alat WRITE( stdout, 310 ) at(:,1)*alat WRITE( stdout, 320 ) at(:,2)*alat WRITE( stdout, 330 ) at(:,3)*alat WRITE( stdout, * ) WRITE( stdout, 350 ) bg(:,1)/alat WRITE( stdout, 360 ) bg(:,2)/alat WRITE( stdout, 370 ) bg(:,3)/alat WRITE( stdout, 340 ) omega 300 FORMAT( 3X, 'ibrav = ',I4) 305 FORMAT( 3X, 'alat = ',F14.8) 310 FORMAT( 3X, 'a1 = ',3F14.8) 320 FORMAT( 3X, 'a2 = ',3F14.8) 330 FORMAT( 3X, 'a3 = ',3F14.8) 350 FORMAT( 3X, 'b1 = ',3F14.8) 360 FORMAT( 3X, 'b2 = ',3F14.8) 370 FORMAT( 3X, 'b3 = ',3F14.8) 340 FORMAT( 3X, 'omega = ',F16.8) RETURN END SUBROUTINE cell_dyn_init !------------------------------------------------------------------------------! SUBROUTINE init_dofree ( cell_dofree ) ! set constraints on cell dynamics/optimization CHARACTER(LEN=*), INTENT(IN) :: cell_dofree SELECT CASE ( TRIM( cell_dofree ) ) CASE ( 'all', 'default' ) iforceh = 1 CASE ( 'shape' ) iforceh = 1 fix_volume = .true. ! RICHARD ADDED CASE FOR SHAPE CHANGE IN xy PLANE WITH CONST AREA CASE ( '2Dshape' ) iforceh = 1 iforceh(3,3) = 0 iforceh(1,3) = 0 iforceh(3,1) = 0 iforceh(2,3) = 0 iforceh(3,2) = 0 fix_volume = .true. fix_area = .true. ! RICHARD CASE ( 'volume' ) CALL errore(' init_dofree ', & ' cell_dofree = '//TRIM(cell_dofree)//' not yet implemented ', 1 ) CASE ('x') iforceh = 0 iforceh(1,1) = 1 iforceh(1,2) = 1 CASE ('y') iforceh = 0 iforceh(2,2) = 1 iforceh(2,1) = 1 CASE ('z') iforceh = 0 iforceh(3,3) = 1 CASE ('xy') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 ! ... if you want the entire xy plane to be free, uncomment: ! iforceh(1,2) = 1 ! iforceh(2,1) = 1 ! RICHARD ALSO MADE ENTIRE xy PLANE TO BE FREE CASE ('2Dxy') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 ! ... if you want the entire xy plane to be free, uncomment: iforceh(1,2) = 1 iforceh(2,1) = 1 ! RICHARD CASE ('xz') iforceh = 0 iforceh(1,1) = 1 iforceh(3,3) = 1 CASE ('yz') iforceh = 0 iforceh(2,2) = 1 iforceh(3,3) = 1 CASE ('xyz') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 iforceh(3,3) = 1 CASE DEFAULT CALL errore(' init_dofree ',' unknown cell_dofree '//TRIM(cell_dofree), 1 ) END SELECT END SUBROUTINE init_dofree !------------------------------------------------------------------------------! SUBROUTINE cell_base_reinit( ht ) USE control_flags, ONLY: iverbosity IMPLICIT NONE REAL(DP), INTENT(IN) :: ht (3,3) INTEGER :: j alat = sqrt( ht(1,1)*ht(1,1) + ht(1,2)*ht(1,2) + ht(1,3)*ht(1,3) ) tpiba = 2.0_DP * pi / alat tpiba2 = tpiba * tpiba ! IF( iverbosity > 3 ) THEN WRITE( stdout, 210 ) WRITE( stdout, 220 ) ( ht( 1, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( ht( 2, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( ht( 3, j ), j = 1, 3 ) END IF 210 format(3X,'Simulation cell parameters with the new cell:') 220 format(3X,3F14.8) ! matrix "ht" used in CP is the transpose of matrix "at" ! times the lattice parameter "alat"; matrix "ainv" is "bg" divided alat ! at = TRANSPOSE( ht ) / alat ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) CALL volume( alat, at(1,1), at(1,2), at(1,3), deth ) omega = deth ! ainv(1,:) = bg(:,1)/alat ainv(2,:) = bg(:,2)/alat ainv(3,:) = bg(:,3)/alat ! IF( iverbosity > 3 ) THEN WRITE( stdout, 305 ) alat WRITE( stdout, 310 ) at(:,1)*alat WRITE( stdout, 320 ) at(:,2)*alat WRITE( stdout, 330 ) at(:,3)*alat WRITE( stdout, * ) WRITE( stdout, 350 ) bg(:,1)/alat WRITE( stdout, 360 ) bg(:,2)/alat WRITE( stdout, 370 ) bg(:,3)/alat WRITE( stdout, 340 ) omega END IF 300 FORMAT( 3X, 'ibrav = ',I4) 305 FORMAT( 3X, 'alat = ',F14.8) 310 FORMAT( 3X, 'a1 = ',3F14.8) 320 FORMAT( 3X, 'a2 = ',3F14.8) 330 FORMAT( 3X, 'a3 = ',3F14.8) 350 FORMAT( 3X, 'b1 = ',3F14.8) 360 FORMAT( 3X, 'b2 = ',3F14.8) 370 FORMAT( 3X, 'b3 = ',3F14.8) 340 FORMAT( 3X, 'omega = ',F14.8) RETURN END SUBROUTINE cell_base_reinit !------------------------------------------------------------------------------! SUBROUTINE cell_steepest( hnew, h, delt, iforceh, fcell ) REAL(DP), INTENT(OUT) :: hnew(3,3) REAL(DP), INTENT(IN) :: h(3,3), fcell(3,3) INTEGER, INTENT(IN) :: iforceh(3,3) REAL(DP), INTENT(IN) :: delt INTEGER :: i, j REAL(DP) :: dt2 dt2 = delt * delt DO j=1,3 DO i=1,3 hnew(i,j) = h(i,j) + dt2 * fcell(i,j) * REAL( iforceh(i,j), DP ) ENDDO ENDDO RETURN END SUBROUTINE cell_steepest !------------------------------------------------------------------------------! SUBROUTINE cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos ) REAL(DP), INTENT(OUT) :: hnew(3,3) REAL(DP), INTENT(IN) :: h(3,3), hold(3,3), hnos(3,3), fcell(3,3) INTEGER, INTENT(IN) :: iforceh(3,3) REAL(DP), INTENT(IN) :: frich, delt LOGICAL, INTENT(IN) :: tnoseh REAL(DP) :: htmp(3,3) REAL(DP) :: verl1, verl2, verl3, dt2, ftmp, v1, v2, v3 INTEGER :: i, j dt2 = delt * delt IF( tnoseh ) THEN ftmp = 0.0_DP htmp = hnos ELSE ftmp = frich htmp = 0.0_DP END IF verl1 = 2.0_DP / ( 1.0_DP + ftmp ) verl2 = 1.0_DP - verl1 verl3 = dt2 / ( 1.0_DP + ftmp ) verl1 = verl1 - 1.0_DP DO j=1,3 DO i=1,3 v1 = verl1 * h(i,j) v2 = verl2 * hold(i,j) v3 = verl3 * ( fcell(i,j) - htmp(i,j) ) hnew(i,j) = h(i,j) + ( v1 + v2 + v3 ) * REAL( iforceh(i,j), DP ) ENDDO ENDDO RETURN END SUBROUTINE cell_verlet !------------------------------------------------------------------------------! subroutine cell_hmove( h, hold, delt, iforceh, fcell ) REAL(DP), intent(out) :: h(3,3) REAL(DP), intent(in) :: hold(3,3), fcell(3,3) REAL(DP), intent(in) :: delt integer, intent(in) :: iforceh(3,3) REAL(DP) :: dt2by2, fac integer :: i, j dt2by2 = 0.5_DP * delt * delt fac = dt2by2 do i=1,3 do j=1,3 h(i,j) = hold(i,j) + fac * iforceh(i,j) * fcell(i,j) end do end do return end subroutine cell_hmove !------------------------------------------------------------------------------! subroutine cell_force( fcell, ainv, stress, omega, press, wmassIN ) USE constants, ONLY : eps8 REAL(DP), intent(out) :: fcell(3,3) REAL(DP), intent(in) :: stress(3,3), ainv(3,3) REAL(DP), intent(in) :: omega, press REAL(DP), intent(in), optional :: wmassIN integer :: i, j REAL(DP) :: wmass IF (.not. present(wmassIN)) THEN wmass = 1.0 ELSE wmass = wmassIN END IF do j=1,3 do i=1,3 fcell(i,j) = ainv(j,1)*stress(i,1) + ainv(j,2)*stress(i,2) + ainv(j,3)*stress(i,3) end do end do do j=1,3 do i=1,3 fcell(i,j) = fcell(i,j) - ainv(j,i) * press end do end do IF( wmass < eps8 ) & CALL errore( ' movecell ',' cell mass is less than 0 ! ', 1 ) fcell = omega * fcell / wmass return end subroutine cell_force !------------------------------------------------------------------------------! subroutine cell_move( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, vnhh, velh, tsdc ) REAL(DP), intent(out) :: hnew(3,3) REAL(DP), intent(in) :: h(3,3), hold(3,3), fcell(3,3) REAL(DP), intent(in) :: vnhh(3,3), velh(3,3) integer, intent(in) :: iforceh(3,3) REAL(DP), intent(in) :: frich, delt logical, intent(in) :: tnoseh, tsdc REAL(DP) :: hnos(3,3) hnew = 0.0 if( tnoseh ) then hnos = vnhh * velh else hnos = 0.0_DP end if ! IF( tsdc ) THEN call cell_steepest( hnew, h, delt, iforceh, fcell ) ELSE call cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos ) END IF return end subroutine cell_move !------------------------------------------------------------------------------! SUBROUTINE cell_gamma( hgamma, ainv, h, velh ) ! ! Compute hgamma = g^-1 * dg/dt ! that enters in the ions equation of motion ! IMPLICIT NONE REAL(DP), INTENT(OUT) :: hgamma(3,3) REAL(DP), INTENT(IN) :: ainv(3,3), h(3,3), velh(3,3) REAL(DP) :: gm1(3,3), gdot(3,3) ! ! g^-1 inverse of metric tensor = (ht*h)^-1 = ht^-1 * h^-1 ! gm1 = MATMUL( ainv, TRANSPOSE( ainv ) ) ! ! dg/dt = d(ht*h)/dt = dht/dt*h + ht*dh/dt ! derivative of metrix tensor ! gdot = MATMUL( TRANSPOSE( velh ), h ) + MATMUL( TRANSPOSE( h ), velh ) ! hgamma = MATMUL( gm1, gdot ) ! RETURN END SUBROUTINE cell_gamma !------------------------------------------------------------------------------! SUBROUTINE cell_update_vel( htp, ht0, htm, delt, velh ) ! IMPLICIT NONE TYPE (boxdimensions) :: htp, ht0, htm REAL(DP), INTENT(IN) :: delt REAL(DP), INTENT(OUT) :: velh( 3, 3 ) velh(:,:) = ( htp%hmat(:,:) - htm%hmat(:,:) ) / ( 2.0d0 * delt ) htp%gvel = ( htp%g(:,:) - htm%g(:,:) ) / ( 2.0d0 * delt ) ht0%hvel = velh RETURN END SUBROUTINE cell_update_vel !------------------------------------------------------------------------------! subroutine cell_kinene( ekinh, temphh, velh ) use constants, only: k_boltzmann_au implicit none REAL(DP), intent(out) :: ekinh, temphh(3,3) REAL(DP), intent(in) :: velh(3,3) integer :: i,j ekinh = 0.0_DP do j=1,3 do i=1,3 ekinh = ekinh + 0.5_DP*wmass*velh(i,j)*velh(i,j) temphh(i,j) = wmass*velh(i,j)*velh(i,j)/k_boltzmann_au end do end do return end subroutine cell_kinene !------------------------------------------------------------------------------! function cell_alat( ) real(DP) :: cell_alat if( .NOT. tcell_base_init ) & call errore( ' cell_alat ', ' alat has not been set ', 1 ) cell_alat = alat return end function cell_alat ! !------------------------------------------------------------------------------! END MODULE cell_base !------------------------------------------------------------------------------!